分析 由題意可得x-y>0,可得x2+$\frac{1}{(x-y)y}$=(x-y+y)2+$\frac{1}{(x-y)y}$=(x-y)2+y2+2(x-y)y+$\frac{1}{(x-y)y}$,兩次利用基本不等式可得.
解答 解:∵x>y>0,∴x-y>0,
∴x2+$\frac{1}{(x-y)y}$=(x-y+y)2+$\frac{1}{(x-y)y}$
=(x-y)2+y2+2(x-y)y+$\frac{1}{(x-y)y}$
≥2(x-y)y+2(x-y)y+$\frac{1}{(x-y)y}$
=4(x-y)y+$\frac{1}{(x-y)y}$
≥2$\sqrt{4(x-y)y•\frac{1}{(x-y)y}}$=4
當且僅當x-y=y且4(x-y)y=$\frac{1}{(x-y)y}$即x=$\sqrt{2}$且y=$\frac{\sqrt{2}}{2}$時取等號,
故答案為:4
點評 本題考查基本不等式求最值,湊出可以基本不等式的形式是解決問題的關(guān)鍵和難點,屬中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com