解:(1)由題意,f′(x)=(x+3)(x-1)------------------------------(2分)
當x∈(-∞,-3)時,f′(x)>0;
當x∈(-3,1)時,f′(x)<0;
當x∈(3,+∞)時,f′(x)>0.-----------------------------(4分)
所以,函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,-3)和(3,+∞)、遞減區(qū)間(-3,1)------(6分)
(2)當x變化時,f′(x),f(x)的變化情況如下表
x | -1 | (-1,1) | 1 | (1,2) | 2 |
f′(x) | | - | 0 | + | |
f(x) | | | | | |
--------------(10分)
所以,當x=-1,
當x=1,
------------------------------(12分)
分析:(1)先求導函數(shù),利用導數(shù)大于0,可得函數(shù)的單調(diào)增區(qū)間;導數(shù)小于0,可得函數(shù)的單調(diào)增區(qū)間;
(2)令導數(shù)等于0,確定函數(shù)的極值點,再考慮端點的函數(shù)值,從而確定函數(shù)的最值.
點評:本題以函數(shù)為載體,考查函數(shù)的單調(diào)性,考查函數(shù)的最值,關鍵是正確運用導數(shù)工具.