(理)已知函數(shù)(x>0,a∈R)

(1)求函數(shù)f(x)的單調(diào)區(qū)間;

(2)求函數(shù)f(x)在[1,8]上的最大值和最小值.

答案:
解析:

  

  

  若-32<a<-4,則

  所以f(x)在上的最小值是,

  當(dāng)f(1)=a+1≥f(8)=2a+16,即-32<a≤-15時(shí),最大值是a+1;當(dāng)-15<a<-4時(shí),最大值是2a+16.

  命題意圖:導(dǎo)數(shù)的應(yīng)用,重點(diǎn)是單調(diào)性、極值、最值問題(或方程、不等式等可轉(zhuǎn)化為最值的問題),要注意通性通法的落實(shí).如果有參數(shù),常常需要分類討論:提取常數(shù)系數(shù)時(shí),要注意系數(shù)是否可能為零;導(dǎo)數(shù)為零的x的值有多個(gè)時(shí),要注意它們的大小關(guān)系是否是確定的等.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知函數(shù)f(x)=αx3+bx2+cx+d(a、b、c、d∈R)為奇函數(shù),且在f′(x)min=-1(x∈R),
lim
x→0
f(3+x)-f(3)
x
=8

(1)求函數(shù)f(x)的表達(dá)式;
(2)若函數(shù)f(x)的圖象與函數(shù)m(x)=nx2-2x的圖象有三個(gè)不同的交點(diǎn),且都在y軸的右方,求實(shí)數(shù)n的取值范圍;
(3)若g(x)與f(x)的表達(dá)式相同,是否存在區(qū)間[a,b],使得函數(shù)g(x)的定義域和值域都是[a,b],若存在,求出滿足條件的一個(gè)區(qū)間[a,b];若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知函數(shù)f(x)=2x-1的反函數(shù)為f-1(x),g(x)=log4(3x+1)
(1)用定義證明f-1(x)在定義域上的單調(diào)性;
(2)若f-1(x)≤g(x),求x的取值集合D;
(3)設(shè)函數(shù)H(x)=g(x)-
12
f-1(x),當(dāng)x∈D時(shí),求函數(shù)H(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知函數(shù)f(x)=x2-5x,數(shù)列{an}的通項(xiàng)公式為an=n+
6n
(n∈N*)
.當(dāng)|f(an)-14|取得最小值時(shí),n的所有可能取值集合為
{1,6}
{1,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知函數(shù)y=sin(x-
π
4
)sin(x+
π
4
),則下列判斷正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年上虞市質(zhì)量調(diào)測(cè)二理) 已知函數(shù)=x-klnx,x>0,常數(shù)k>0.

(Ⅰ)試確定函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若對(duì)于任意x≥1,f(x)>0恒成立,試確定實(shí)數(shù)的取值范圍;

(Ⅲ)設(shè)函數(shù)F(x)=,求證:F(1)F(2)……F(2n)>2n(n+1)n(n∈N*).

查看答案和解析>>

同步練習(xí)冊(cè)答案