已知函數(shù)f(x)=x3+ax2+bx+4在(-∞,0)上是增函數(shù),在(0,1)上是減函數(shù).
(Ⅰ)求b的值;
(Ⅱ)當(dāng)x≥0時(shí),曲線y=f(x)總在直線y=a2x-4上方,求a的取值范圍.
【答案】分析:(Ⅰ)由題意得:f(x)在(-∞,0)上是增函數(shù),在(0,1)上是減函數(shù),所以當(dāng)x=0時(shí),f(x)有極大值,即f′(x)=0,即b=0.
(Ⅱ)因?yàn)閒(x)在(-∞,0)上是增函數(shù),在(0,1)上是減函數(shù),所以,即a.因?yàn)榍y=f(x)在直線y=a2x-4的上方,設(shè)g(x)=(x3+ax2+4)-(a2x-4),
所以在x∈[0,+∝)時(shí),g(x)≥0恒成立.用導(dǎo)數(shù)求函數(shù)g(x)的最小值為g(-a),保證其大于0即可.
解答:解:(Ⅰ)∵f(x)=x3+ax2+bx+4,
∴f′(x)=3x2+2ax+b.
∵f(x)在(-∞,0)上是增函數(shù),在(0,1)上是減函數(shù),
∴當(dāng)x=0時(shí),f(x)有極大值,即f′(x)=0,
∴b=0.
(Ⅱ)f′(x)=3x2+2ax=x(3x+2a),
∵f(x)在(-∞,0)上是增函數(shù),在(0,1)上是減函數(shù),
,即a
∵曲線y=f(x)在直線y=a2x-4的上方,
設(shè)g(x)=(x3+ax2+4)-(a2x-4),
∴在x∈[0,+∝)時(shí),g(x)≥0恒成立.
∵g′(x)=3x2+2ax-a2=(3x-a)(x+a),
令g′(x)=0,兩個(gè)根為-a,,且
x(0,-a)-a(-a,+∞)
g′(x)-+
g(x)單調(diào)遞減極小值單調(diào)遞增
∴當(dāng)x=-a時(shí),g(x)有最小值g(-a).
令g(-a)=(-a3+a3+4)-(-a3-4)>0,
∴a3>-8,由,
∴-2<a
點(diǎn)評(píng):解決此類問(wèn)題的關(guān)鍵是將不等式在某個(gè)區(qū)間上恒成立問(wèn)題轉(zhuǎn)化為函數(shù)在該區(qū)間上的最值問(wèn)題,再利用導(dǎo)數(shù)求函數(shù)的最值,這也是高考考查的熱點(diǎn)之一.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案