9.函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{\sqrt{x}},x>0}\\{{x}^{2},x≤0}\end{array}\right.$,則f(f(-3))=$\frac{1}{3}$.

分析 直接利用函數(shù)的解析式求解函數(shù)值即可.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{\sqrt{x}},x>0}\\{{x}^{2},x≤0}\end{array}\right.$,則f(f(-3))=f(9)=$\frac{1}{\sqrt{9}}$=$\frac{1}{3}$.
故答案為:$\frac{1}{3}$.

點評 本題考查分段函數(shù)的應(yīng)用,函數(shù)值的求法,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.用0,1,2,3,4,5這六個數(shù)字.
(1)可組成多少個無重復(fù)數(shù)字的五位數(shù)?
(2)可組成多少個無重復(fù)數(shù)字的能被5整除的五位數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在四面體S-ABC中,SA⊥平面ABC,∠BAC=120°,SA=AC=2,AB=1,則該四面體的外接球的表面積為( 。
A.11πB.$\frac{28π}{3}$C.$\frac{10π}{3}$D.$\frac{40π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合P={1,3},則滿足P∪Q={1,2,3,4}的集合Q的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若函數(shù)f(x)是定義在R上的奇函數(shù),且x>0時,f(x)=lnx,則ef(-2)的值為( 。
A.$\frac{1}{e}$B.$\frac{1}{2}$C.$\frac{1}{{e}^{2}}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.過點(-1,3)且與直線x-2y+1=0垂直的直線方程為y+2x-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)直線l的方程是x+my+2$\sqrt{3}$=0,圓O的方程是x2+y2=r2(r>0).
(1)當(dāng)m取一切實數(shù)時,直線l與圓O都有公共點,求r的取值范圍;
(2)r=5時,求直線l被圓O截得的弦長的取值范圍;
(3)當(dāng)r=1時,設(shè)圓O與x軸相交于P、Q兩點,M是圓O上異于P、Q的任意一點,直線PM交直線l′:x=3于點P′,直線QM交直線l′于點Q′.求證:以P′Q′為直徑的圓C總經(jīng)過定點,并求出定點坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知$sin({\frac{π}{3}+α})=\frac{1}{3}$,則$cos({\frac{π}{3}-2α})$的值等于( 。
A.$-\frac{5}{9}$B.$-\frac{7}{9}$C.$\frac{5}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖所示是一次體操比賽時七位評委對某選手打分的莖葉圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均數(shù)和標準差分別為( 。
A.87.4,17.2B.87.4,4.147C.87,17.2D.87,4.147

查看答案和解析>>

同步練習(xí)冊答案