已知集合M={y|y=x2+bx+2,x∈R},N={y|y=2x2-bx+1,x∈R},則有( 。
A、M⊆NB、N⊆M
C、M∩N=∅D、M∩N≠∅
考點(diǎn):集合的包含關(guān)系判斷及應(yīng)用
專(zhuān)題:集合
分析:假設(shè)x2+bx+2=2x2-bx+1,判斷出x的解的情況,進(jìn)而判斷出集合M、N有沒(méi)有公共元素以及它們的關(guān)系即可.
解答: 解:假設(shè)x2+bx+2=2x2-bx+1,可得
x2-2bx-1=0;
因?yàn)椤?4b2+4>0恒成立,
所以二元一次方程有解,
因此集合M、N有公共元素,
則M∩N≠∅,但不能判斷兩個(gè)集合之間的包含關(guān)系.
故選:D.
點(diǎn)評(píng):本題主要考查了集合與集合之間的關(guān)系的判斷,考查了不等式的解法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=alnx+
1
2
x2
,若對(duì)任意不相等的兩個(gè)正數(shù)x1,x2都有(x1-x2)[f(x1)-f(x2)]>0,則實(shí)數(shù)a的取值范圍是(  )
A、[0,+∞)
B、(0,+∞)
C、(0,1)
D、(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A={3,5,6,8},B={4,5,7,8},則A∩B=( 。
A、{3,4,5,6,7,8}
B、{5,8}
C、{3,6,7,4}
D、{3,5,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用反證法證明命題“若a2m+b2n=0,(a,b∈R,且m,n∈N*),則a,b全為0”時(shí),應(yīng)假設(shè)( 。
A、a,b中至少有一個(gè)為0
B、a,b中至少有一個(gè)不為0
C、a,b全不為0
D、a,b中只有一個(gè)為0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=-x2+2x+3在區(qū)間[-2,2]上的最大、最小值分別為( 。
A、4,3B、3,-5
C、4,-5D、5,-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
3     (x≤1)
-x+5    (x>1)
,求f(f(6))的值是( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

滿(mǎn)足f(x+π)=-f(x)且為奇函數(shù)的函數(shù)f(x)可能是(  )
A、cos2x
B、sinx
C、sin
x
2
D、cosx
E、sin
x
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某學(xué)校舉辦趣味運(yùn)動(dòng)會(huì),甲、乙兩名同學(xué)報(bào)名參加比賽,每人投籃2次,每次等可能選擇投2分球或3分球.據(jù)賽前訓(xùn)練統(tǒng)計(jì):甲同學(xué)投2分球命中率為
3
5
,投3分球命中率為
3
10
;乙同學(xué)投2分球命中率為
1
2
,投3分球命中率為
2
5
,且每次投籃命中與否相互之間沒(méi)有影響.
(1)若甲同學(xué)兩次都選擇投3分球,求其總得分ξ的分布列和數(shù)學(xué)期望;
(2)記“甲、乙兩人總得分之和不小于10分”為事件A,記“甲同學(xué)總得分大于乙同學(xué)總得分”為事件B,求P(AB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,點(diǎn)P是圓x2+y2=4上一動(dòng)點(diǎn),PD⊥x軸于點(diǎn)D,記滿(mǎn)足
OM
=
1
2
OP
+
OD
)的動(dòng)點(diǎn)M的軌跡為Γ.
(Ⅰ)求軌跡Γ的方程;
(Ⅱ)已知直線(xiàn)l:y=kx+m與軌跡F交于不同兩點(diǎn)A,B,點(diǎn)G是線(xiàn)段AB中點(diǎn),射線(xiàn)OG交軌跡F于點(diǎn)Q,且
OQ
OG
,λ∈R.
①證明:λ2m2=4k2+1;
②求△AOB的面積S(λ)的解析式,并計(jì)算S(λ)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案