【題目】光線從點A(-3,4)射出,到x軸上的點B后,被x軸反射到y(tǒng)軸上的點C,又被y軸反射,這時反射光線恰好過點D(-1,6),求光線BC所在直線的斜率.

【答案】

【解析】

,根據(jù)反射角等于入射角可得,由此建立關于的方程組,求出,利用斜率公式可得結果.

設B(a,0),C(0,b),過點B,C作兩條法線交于點E,則∠E=90°.

所以∠ECB+∠EBC=90°,

所以2∠ECB+2∠EBC=180°.

由反射角等于入射角,得∠ABE=∠EBC,∠BCE=∠DCE,所以∠DCB+∠ABC=180°.

所以AB∥CD.

所以kAB=kCD,即 =b-6.①

由反射角等于入射角,還可得直線AB的傾斜角與直線BC的傾斜角互補,所以kAB=-kBC,

.②

由①②聯(lián)立得a=- ,b=

所以.所以kBC

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,等腰的底邊,高,點是線段上異于點的動點,點邊上,且,現(xiàn)沿將△折起到△的位置,使,記, 表示四棱錐的體積.

(1)的表達式;(2)為何值時, 取得最大,并求最大值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高校在今年的自主招生考試成績中隨機抽取 100 名考生的筆試成績,分為 5 組制出頻率分布直方圖如圖所示.

組號

分組

頻數(shù)

頻率

1

5

0.05

2

35

0.35

3

4

5

10

0.1

(1)求的值.

(2)該校決定在成績較好的 、4、5 組用分層抽樣抽取 6 名學生進行面試,則每組應各抽多少名學生?

(3)在(2)的前提下,從抽到 6 名學生中再隨機抽取 2 名被甲考官面試,求這 2 名學生來自同一組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三棱錐中,側面與底面垂直,.

(1)求證:;

(2)設,求與平面所成角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】動圓M與定圓C:x2+y2+4x=0相外切,且與直線l:x-2=0相切,則動圓M的圓心的軌跡方程為(  )

A. y2-12x+12=0 B. y2+12x-12=0

C. y2+8x=0 D. y2-8x=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A,B,C為銳角△ABC的三個內(nèi)角,向量 =(2﹣2sinA,cosA+sinA), =(1+sinA,cosA﹣sinA),且
(1)求A的大;
(2)求y=2sin2B+cos( ﹣2B)取最大值時角B的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=|ex﹣e2a|,若f(x)在區(qū)間(﹣1,3﹣a)內(nèi)的圖象上存在兩點,在這兩點處的切線相互垂直,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=2x3﹣6x2+m(m為常數(shù)),在[﹣2,2]上有最大值3,那么此函數(shù)在[﹣2,2]上的最小值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: 的右焦點為F(1,0),且點(﹣1, )在橢圓C上.
(1)求橢圓C的標準方程;
(2)已知動直線l過點F,且與橢圓C交于A,B兩點,試問x軸上是否存在定點Q,使得 恒成立?若存在,求出點Q的坐標,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案