4、已知f(1-x)=x2+1,則f(-1)等于(  )
分析:設(shè)1-x=t,x=1-t,則f(t)=(1-t)2+1=t2-2t+2,由此可以求出f(-1)的值.
解答:解:設(shè)1-x=t,x=1-t,
則f(t)=(1-t)2+1=1-2t+t2+1=t2-2t+2,
∴f(-1)=1+2+2=5.
故選C.
點(diǎn)評:本題考查函數(shù)值的求法,解題時(shí)要注意公式的靈活運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

8、已知集合M={f(x)|f(-x)=f(x),x∈R};N={f(x)|f(-x)=-f(x),x∈R};P={f(x)|f(1-x)=f(1+x),x∈R};Q={f(x)|f(1-x)=-f(1+x),x∈R};若f(x)=(x-1)3,x∈R,則下列關(guān)系中正確的序列號為:

①f(x)∈M②f(x)∈N③f(x)∈P④f(x)∈Q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是可導(dǎo)的函數(shù),且f′(x)<f(x)對于x∈R恒成立,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知f(
x
+1)=x+2
,求函數(shù)f(x)的解析式;
(2)若二次函數(shù)f(x)滿足f(x+1)-f(x)=2x且f(0)=1,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在(0,+∞)上的函數(shù),且對任意正數(shù)x,y都有f(xy)=f(x)+f(y),且當(dāng)x>1時(shí),f(x)>0.
(1)證明f(x)在(0,+∞)上為增函數(shù);
(2)若f(3)=1,集合A={x|f(x)>f(x-1)+2},B={x|f(
(a+1)x-1x+1
)>0,a∈R}
,A∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
1+x
+
3-x
的最大值為a,最小值為b,則ab等于
 

查看答案和解析>>

同步練習(xí)冊答案