已知橢圓的中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在x軸上,P為橢圓上一點(diǎn),|PF1|=
4
5
3
,|PF2|=
2
5
3
,且過(guò)點(diǎn)P作長(zhǎng)軸的垂線恰好過(guò)橢圓的一個(gè)焦點(diǎn),求橢圓方程.
分析:先根據(jù)橢圓的中心在原點(diǎn),焦點(diǎn)F1、F2在x軸上設(shè)出橢圓的標(biāo)準(zhǔn)形式,再由P到兩焦點(diǎn)的距離得到2a=|PF1|+|PF2|得到a的值,結(jié)合過(guò)P且與長(zhǎng)軸垂直的直線恰過(guò)橢圓的一個(gè)焦點(diǎn),可求得b的值,進(jìn)而可求得橢圓的方程.
解答:解:橢圓方程為
x2
a2
+
y2
b2
=1
(a>b>0).
由條件,知2a=
4
5
3
+
2
5
3
=2
5
,a=
5

又過(guò)點(diǎn)P作長(zhǎng)軸的垂線恰好過(guò)橢圓的一個(gè)焦點(diǎn),
得垂直于長(zhǎng)軸的線段長(zhǎng)為:
b2
a
=
2
5
3

b2=
10
3

∴橢圓方程為
x2
5
+
3y2
10
=1
點(diǎn)評(píng):本題主要考查橢圓的基本性質(zhì)的運(yùn)用.橢圓的基本性質(zhì)是高考的重點(diǎn)內(nèi)容,一定要熟練掌握并能夠靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為
2
2
,且橢圓經(jīng)過(guò)圓C:x2+y2-4x+2
2
y=0的圓心C.
(1)求橢圓的方程;
(2)設(shè)直線l過(guò)橢圓的焦點(diǎn)且與圓C相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心在原點(diǎn)O,焦點(diǎn)在坐標(biāo)軸上,直線y=2x+1與該橢圓相交于P和Q,且OP⊥OQ,|PQ|=
1011
,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,左焦點(diǎn)為F1(-3,0),右準(zhǔn)線方程為x=
253

(1)求橢圓的標(biāo)準(zhǔn)方程和離心率e;
(2)設(shè)P為橢圓上第一象限的點(diǎn),F(xiàn)2為右焦點(diǎn),若△PF1F2為直角三角形,求△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心在原點(diǎn),且橢圓過(guò)點(diǎn)P(3,2),焦點(diǎn)在坐標(biāo)軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的3倍,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心在原點(diǎn),一個(gè)焦點(diǎn)F1(0,-2
2
),且離心率e滿足:
2
3
,e,
4
3
成等比數(shù)列.
(1)求橢圓方程;
(2)直線y=x+1與橢圓交于點(diǎn)A,B.求△AOB的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案