已知:f(x)=2cos2x+sin2x+a.(a∈R,a為常數(shù))
(1)若x∈R,求f(x)單調遞增區(qū)間;
(2)若f(x)在[-
π
6
π
3
]上最大值與最小值之和為3,求a的值;
(3)在(2)條件下的f(x)與g(x)關于x=
π
4
對稱,寫出g(x)的解析式.
分析:(1)利用兩角和差的正弦公式化簡f(x)的解析式為2sin(2x+
π
6
)+a+1,由 2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
,k∈z,求得f(x)的單調遞增區(qū)間.
(2)根據x的范圍求出2x+
π
6
的范圍,進而得到sin(2x+
π
6
)的范圍,從而得到f(x)的最大值和最小值,由最大值與最小值之和為3,求得a的值.
(3)由(2)可得f(x)=2sin(2x+
π
6
)+1,f(x)與g(x)關于x=
π
4
對稱,可得 g(x)=f(
π
2
-x),利用誘導公式求得g(x)的解析式.
解答:解:(1)f(x)=1+cos2x+
3
sin2x+a=2sin(2x+
π
6
)+a+1.(2分)
由 2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
,k∈z,可得kπ-
π
3
≤x≤kπ+
π
6
,k∈Z,
故 f(x)的單調遞增區(qū)間為[kπ-
π
3
,kπ+
π
6
],k∈Z.(4分)
(2)x∈[-
π
6
,
π
3
],∴2x+
π
6
∈[-
π
6
,
3
],∴sin(2x+
π
6
)∈[-
1
2
,1]).(7分)
∴f(x)的最大值為3+a,最小值為a,∴3+a+a=3,∴a=0.(9分)
(3)由(2)可得f(x)=2sin(2x+
π
6
)+1,f(x)與g(x)關于x=
π
4
對稱,
故g(x)=f(
π
2
-x)=sin[2(
π
2
-x)+
π
6
]=sin(π+
π
6
-2x)=-sin(
π
6
-2x)=sin(2x-
π
6
),
即 g(x)=sin(2x-
π
6
). (12分)
點評:本題主要考查兩角和差的正弦公式,同角三角函數(shù)的基本關系,誘導公式,正弦函數(shù)的定義域和值域,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知y=f(x)為R上的可導函數(shù),當x≠0時,f′(x)+
f(x)
x
>0
,則關于x的函數(shù)g(x)=f(x)+
1
x
的零點個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-x2+ax+b2-b+1,(a,b∈R)對任意實數(shù)x都有f(1-x)=f(1+x)成立,若當x∈[-1,1]時,f(x)>0恒成立,則b的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•桂林模擬)已知函數(shù)f(x)的反函數(shù)為g(x)=log2x+1,則f(2)+g(2)=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•許昌三模)已知函數(shù)f(x)=sinx+cosx,g(x)=sinx-cosx,下列四個命題:
①將f(x)的圖象向右平移
π
2
個單位可得到g(x)的圖象;
②y=f(x)g(x)是偶函數(shù);
③y=
f(x)
g(x)
是以π為周期的周期函數(shù);
④對于?x1∈R,?x2∈R,使f(x1)>g(x2).
其中真命題的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的圖象是連續(xù)不斷的,x、f(x)的對應關系如表:
x 1 2 3 4 5 6
f(x) 136.13 15.55 -3.92 10.88 -52.48 -232.06
則函數(shù)f(x)存在零點的個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

同步練習冊答案