已知拋物線y2=4x,過(guò)點(diǎn)P(4,0)的直線與拋物線相交于A(x1,y1)、B(x2,y2)兩點(diǎn),則y12+y22的最小值是_________.
32
過(guò)點(diǎn)P(4,0)的直線方程可設(shè)為x=ky+4,
y2-4ky-16=0,則
y12+y22=(y1+y2)2-2y1y2=16k2+32,當(dāng)且僅當(dāng)k=0時(shí)y12+y22有最小值32.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分15分)已知拋物線上的一點(diǎn)(m,1)到焦點(diǎn)的距離為.點(diǎn)是拋物線上任意一點(diǎn)(除去頂點(diǎn)),過(guò)點(diǎn)的直線和拋物線交于點(diǎn),過(guò)點(diǎn)與的直線和拋物線交于點(diǎn).分別以點(diǎn),為切點(diǎn)的拋物線的切線交于點(diǎn)P′.

(I)求拋物線的方程;
(II)求證:點(diǎn)P′在y軸上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知兩定點(diǎn)A、B,一動(dòng)點(diǎn)P,如果∠PAB和∠PBA中的一個(gè)是另一個(gè)的2倍,求P點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓C1:(x+3)2+y2=1和圓C2:(x-3)2+y2=9,動(dòng)圓M同時(shí)與圓C1及圓C2相外切,求動(dòng)圓圓心M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,已知a·b<0,方程y=ax+bbx2+ay2=ab所表示的曲線只能是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線型拱橋,當(dāng)水面距拱頂8 m時(shí),水面寬24 m,若雨后水面上漲2 m,則此時(shí)的水面寬約為(以下數(shù)據(jù)供參考:≈1.7,≈1.4)(  )
A.20.4mB.10.2 mC.12.8 mD.6.4 m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線上有兩動(dòng)點(diǎn)及一個(gè)定點(diǎn)為拋物線的焦點(diǎn),且成等差數(shù)列.
(1)求證:線段的垂直平分線經(jīng)過(guò)定點(diǎn)
(2)若,為坐標(biāo)原點(diǎn)),求此拋物線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn)
(1)求軌跡E的方程;
(2)若直線l過(guò)點(diǎn)F2且與軌跡E交于PQ兩點(diǎn),
①無(wú)論直線繞點(diǎn)怎樣轉(zhuǎn)動(dòng),在軸上總存在定點(diǎn),使恒成立,求實(shí)數(shù)的值;
②過(guò)作直線的垂線
的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)的焦點(diǎn)作直線交拋物線與兩點(diǎn),若的長(zhǎng)分別是,則                                           (    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案