設數(shù)列{an}為等比數(shù)列,公比q=2,則
a2+3a4+5a7a4+3a6+5a9
的值為
 
分析:把所求的式子分子分母利用等比數(shù)列的通項公式化簡,分母提取q2后約分即可把所求的式子化簡為關于q的式子,把q的值代入即可求出值.
解答:解:∵q=2,
a2+3a4+5a7
a4+3a6+5a9
=
a1q+3a1q3+5a1q6   
a1q3+3a1q5+ 5a1q8 

=
a1q+3a1q3+5a1q6  
q2(a1q +3a1q3+ 5a1q6)
=
1
q2
=
1
4

故答案為:
1
4
點評:此題考查了等比數(shù)列的通項公式,熟練掌握等邊數(shù)列的通項公式是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設{an}為等比數(shù)例,Tn=na1+(n-1)a2…+2an-1+an,已知T1=1,T2=4,
(1)求數(shù)列{an}的首項和公比;
(2)求數(shù)列{Tn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源:廣東 題型:解答題

設{an}為等比數(shù)例,Tn=na1+(n-1)a2…+2an-1+an,已知T1=1,T2=4,
(1)求數(shù)列{an}的首項和公比;
(2)求數(shù)列{Tn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年貴州省遵義四中高三(上)第二次月考數(shù)學試卷(理科)(解析版) 題型:解答題

設{an}為等比數(shù)例,Tn=na1+(n-1)a2…+2an-1+an,已知T1=1,T2=4,
(1)求數(shù)列{an}的首項和公比;
(2)求數(shù)列{Tn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年貴州省遵義四中高三(上)第二次月考數(shù)學試卷(文科)(解析版) 題型:解答題

設{an}為等比數(shù)例,Tn=na1+(n-1)a2…+2an-1+an,已知T1=1,T2=4,
(1)求數(shù)列{an}的首項和公比;
(2)求數(shù)列{Tn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高三數(shù)學復習(第6章 數(shù)列):6.3 等差數(shù)列、等比數(shù)列(二)(解析版) 題型:解答題

設{an}為等比數(shù)例,Tn=na1+(n-1)a2…+2an-1+an,已知T1=1,T2=4,
(1)求數(shù)列{an}的首項和公比;
(2)求數(shù)列{Tn}的通項公式.

查看答案和解析>>

同步練習冊答案