已知向量=(coswx,sinwx),=(coswx,coswx),其中(0<w<2),函數(shù)f(x)=·-其圖象的一條對(duì)稱(chēng)軸為x=
(Ⅰ)求函數(shù)f(x)的表達(dá)式及單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a、b、c分別為角A、B、C的對(duì)邊,S為其面積,若=1,b=l,S△ABC=,求a的值.
解:(Ⅰ)
,
當(dāng)x=時(shí),,即
∵0<w<2,∴w=1,
,
,
,
所以,函數(shù)f(x)的單調(diào)增區(qū)間為。
(Ⅱ),
在△ABC中,
,
,得c=4,
由余弦定理,得
。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
=(
3
sinwx,coswx), 
=(coswx,coswx)
,(其中w>0).設(shè)f(x)=
,且f(x)的最小正周期為π.
(1)求w;
(2)若0<x≤
π
3
,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
OA
=(sinwx,coswx)
,
OB
=(
3
coswx,coswx)
,其中0<ω<2,設(shè)函數(shù)f(x)=
OA
OB

(1)若f(x)的最小正周期為2π,求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若函數(shù)f(x)圖象的一條對(duì)稱(chēng)軸為x=
π
6
,求w的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(
3
sinwx,coswx),
b
=(coswx,coswx),其中w>0,記函數(shù)f(x)=
a
b
,已知f(x)的最小正周期為π.
(Ⅰ)求w的值;
(Ⅱ)求f(x)的單調(diào)增區(qū)間;
(Ⅲ)當(dāng)x∈(0,
π
3
]時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(coswx,sinwx)
,
n
=(coswx,
3
coswx)
,其中0<w<2,函數(shù)f(x)=
m
n
-
1
2
,直線(xiàn)x=
π
6
為其圖象的一條對(duì)稱(chēng)軸.
(Ⅰ)求函數(shù)f(x)的表達(dá)式及其單調(diào)遞減區(qū)間;
(Ⅱ)在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,已知f(
A
2
)=1
,b=2,S△ABC=2
3
,求a值.

查看答案和解析>>

同步練習(xí)冊(cè)答案