給出定義:若m-<x≤m+(其中m為整數(shù)),則m叫做離實數(shù)x最近的整數(shù),記作{x}=m.在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=|x-{x}|的四個命題:
①函數(shù)y=f(x)的定義域為R,值域為[0,];
②函數(shù)y=f(x)的圖象關(guān)于直線x=(k∈Z)對稱;
③函數(shù)y=f(x)是周期函數(shù),最小正周期為1;
④函數(shù)y=f(x)在[-]上是增函數(shù).
其中正確的命題的序號   
【答案】分析:本題為新定義問題,因為m為整數(shù),故可取m為幾個特殊的整數(shù)進行研究.
解答:解:由題意x-{x}=x-m,f(x)=|x-{x}|=|x-m|,
m=0時,-<x≤,f(x)=|x|,
m=1時,1-<x≤1+,f(x)=|x-1|,
m=2時,2-<x≤2+,f(x)=|x-2|,
由圖象可知正確命題為①②③,
故答案為:①②③.
點評:本題是新定義問題,考查函數(shù)的性質(zhì),可結(jié)合圖象進行研究,體現(xiàn)數(shù)形結(jié)合思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•門頭溝區(qū)一模)給出定義:若m-
1
2
≤x<m+
1
2
(其中m為整數(shù)),則m叫離實數(shù)x最近的整數(shù),記作[x]=m,已知f(x)=|[x]-x|,下列四個命題:
①函數(shù)f(x)的定義域為R,值域為[0,
1
2
]
; ②函數(shù)f(x)是R上的增函數(shù);
③函數(shù)f(x)是周期函數(shù),最小正周期為1;  ④函數(shù)f(x)是偶函數(shù),
其中正確的命題的個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出定義:若m-
1
2
≤x<m+
1
2
(其中m為整數(shù)),則m叫離實數(shù)x最近的整數(shù),記作[x]=m,已知f(x)=|[x]-x|,下列四個命題:
①函數(shù)f(x)的定義域為R,值域為[0,
1
2
]
;   ②函數(shù)f(x)是R上的增函數(shù);
③函數(shù)f(x)是周期函數(shù),最小正周期為1;    ④函數(shù)f(x)是偶函數(shù),
其中正確的命題是
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年北京市石景山區(qū)高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

給出定義:若m-<x≤m+(其中m為整數(shù)),則m叫做離實數(shù)x最近的整數(shù),記作{x},即{x}=m.在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=x-{x}的四個命題:
①y=f(x)的定義域是R,值域是(];
②點(k,0)(k∈Z)是y=f(x)的圖象的對稱中心;
③函數(shù)y=f(x)的最小正周期為1;
④函數(shù)y=f(x)在(,]上是增函數(shù);
則其中真命題是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江西省南昌市蓮塘一中高三(上)12月月考數(shù)學(xué)試卷(解析版) 題型:填空題

給出定義:若m-<x≤m+(其中m為整數(shù)),則m叫做離實數(shù)x最近的整數(shù),記作{x},即{x}=m.在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=x-{x}的四個命題:
①y=f(x)的定義域是R,值域是(];
②點(k,0)(k∈Z)是y=f(x)的圖象的對稱中心;
③函數(shù)y=f(x)的最小正周期為1;
④函數(shù)y=f(x)在(,]上是增函數(shù);
則其中真命題是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年湖北省“黃岡中學(xué)、黃石二中、華師一附中、荊州中學(xué)、孝感高中、襄樊四中、襄樊五中、鄂南高中”八校高三第一次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

給出定義:若m-<x≤m+(其中m為整數(shù)),則m叫做離實數(shù)x最近的整數(shù),記作{x},即{x}=m.在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=x-{x}的四個命題:
①y=f(x)的定義域是R,值域是(,];
②點(k,0)(k∈Z)是y=f(x)的圖象的對稱中心;
③函數(shù)y=f(x)的最小正周期為1;
④函數(shù)y=f(x)在(,]上是增函數(shù);
則其中真命題是   

查看答案和解析>>

同步練習(xí)冊答案