已知Ω為xOy平面內(nèi)的一個區(qū)域,p:點(a,b)∈{(x,y)|
x-y+2≤0
x≥0
3x+y-6≤0
;q:點(a,b)∈Ω.如果p是q的充分條件,那么區(qū)域Ω的面積的最小值是
 
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:作出不等式組對應(yīng)的平面區(qū)域,根據(jù)充分條件和必要條件的定義進(jìn)行求解.
解答: 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
若p是q的充分條件,
則區(qū)域Ω的面積的最小值即為△ABC的面積,
x-y+2=0
3x+y-6=0
x=1
y=3
,即B(1,3),
又A(0,6),C(0,2),
則△ABC的面積S=
1
2
×1×(6-2)=
1
2
×4=2

故答案為:2
點評:本題主要考查充分條件和必要條件的應(yīng)用,根據(jù)二元一次不等式組表示平面區(qū)域,求出對應(yīng)的面積是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若把一個正方形用斜二測畫法畫出,有下列說法:
①所得圖形一定是矩形;
②所得圖形一定是平行四邊形;
③所得圖形一定是梯形;
④原正方形的中心一定是所得圖形對角線的交點.
其中正確的是( 。
A、①②③④B、②④
C、③④D、②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等腰三角形ABC的腰長為底邊長的2倍,則頂角A的余弦值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)i是虛數(shù)單位,則復(fù)數(shù)
1
-1+i
的虛部是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解不等式x2+x-56≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三角形ABC中,AC⊥BC,平面PAC⊥平面ABC,PA=PC=AC=2,BC=3,E,F(xiàn)分別是PC,PB的中點,記平面AEF與平面ABC的交線為直線l.
(1)求證:直線l∥BC;
(2)若直線l上一點Q滿足BQ∥AC,求平面PAC與平面EQB的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2-2x+4my+4m2=0,圓C1:x2+y2=25,以及直線l:3x-4y-15=0.
(1)求圓C1:x2+y2=25被直線l截得的弦長;
(2)當(dāng)m為何值時,圓C與圓C1的公共弦平行于直線l;
(3)是否存在m,使得圓C被直線l所截的弦AB中點到點P(2,0)距離等于弦AB長度的一半?若存在,求圓C的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若一個菱形的兩條對角線分別在直線l1:直線(a+1)x+y-a=0和直線l2:ax+2(a+1)y+1=0上,則對角線的交點坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

近年來,我國許多城市霧霾現(xiàn)象頻發(fā),PM2.5(即環(huán)境空氣中空氣動力學(xué)當(dāng)量直徑小于或等于2.5微米的顆粒物)是衡量空氣質(zhì)量的一項指標(biāo).據(jù)相關(guān)規(guī)定,PM2.5日均濃度值不超過35微克/立方米空氣質(zhì)量為優(yōu),在35微克/立方米至75微克/立方米之間的空氣質(zhì)量為良,某市環(huán)保局隨機(jī)抽取了一居民區(qū)今年上半年中30天的PM2.5日均濃度監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計如下:
組別PM2.5日均濃度(微克/立方米)頻數(shù)(天)
第一組(15,35]3
第二組(35,55]9
第三組(55,75]12
第四組(75,95]6
(1)估計該樣本的中位數(shù)和平均數(shù);
(2)將頻率視為概率,用樣本估計總體,對于今年上半年中的某3天,記這3天中該居民區(qū)空氣質(zhì)量為優(yōu)或良的天數(shù)為X,求X的分布列及數(shù)學(xué)期望EX.

查看答案和解析>>

同步練習(xí)冊答案