已知非零向量滿足.則△ABC為(    )

A.三邊均不相等的三角形

B.直角三角形

C.等腰非等邊三角形

D.等邊三角形

解析:向量和三角形之間的依賴關系,認識角平分線和高及夾角用兩向量數(shù)量積包裝的意義,由(=0知,角A的平分線和BC的高重合,則|=||,由知,夾角A為60°,則△ABC為等邊三角形,選D.

答案:D

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知非零向量滿足(=0且=,則△ABC為(    )

A.三邊均不相等的三角形                  B.直角三角形

C.等腰非等邊三角形                        D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知非零向量滿足(=0,且()=.則△ABC為(    )

A.三邊均不相等的三角形           B.直角三角形

C.等腰非等邊三角形               D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

9.已知非零向量滿足

       (A)等邊三角形        。˙)直角三角形

       (C)等腰非等邊三角形     。―)三邊均不相等的三角形

查看答案和解析>>

科目:高中數(shù)學 來源:2011年吉林省高一上學期期末質量檢測數(shù)學試卷 題型:選擇題

已知非零向量滿足()·=0且·,

則△ABC為 (     )

A.等邊三角形   B.直角三角形   C.等腰非等邊三角形   D.三邊均不相等的三角形

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年安徽省、岳西中學高三上學期聯(lián)考理科數(shù)學卷 題型:選擇題

已知非零向量滿足(+)·=0,且·=,則△ABC為

A. 等腰非等邊三角形            B.等邊三角形     

C. 三邊均不相等的三角形        D.直角三角形

 

查看答案和解析>>

同步練習冊答案