4.在下列條件中,可判定平面α與平面β平行的是( 。
A.α,β都平行于直線a
B.α內(nèi)有三個不共線的點到β的距離相等
C.l,m是α內(nèi)的兩條直線,且l∥β,m∥β
D.l,m是兩條異面直線,且l∥α,m∥α,l∥β,m∥β

分析 A、B、C列舉反例:當α∩β=l,l∥a,不能推出α∥β;當α∩β=a,且在α內(nèi)同側(cè)有兩點,另一側(cè)一個點,三點到β的距離相等;當l與m平行;先判斷α內(nèi)存在兩條相交直線與平面β平行,再根據(jù)面面平行的判定,即可得到結(jié)論.

解答 解:對于A,當α∩β=l,l∥a時,不能推出α∥β;
對于B,當α∩β=a,且在α內(nèi)同側(cè)有兩點,另一側(cè)一個點,三點到β的距離相等時,不能推出α∥β;
對于C,當l與m平行時,不能推出α∥β;
對于D,∵l,m是兩條異面直線,且l∥α,m∥α,l∥β,m∥β,∴α內(nèi)存在兩條相交直線與平面β平行,根據(jù)面面平行的判定,可得α∥β,
故選D.

點評 本題考查面面平行的判定,解題時,不正確的結(jié)論列舉反例,正確的結(jié)論要給出充分的理由.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

18.已知集合A={x∈N|1≤x≤10},B是A的子集,且B中各元素的和為8,則滿足條件的集合B共有( 。
A.8個B.7個C.6個D.5個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知向量$\overrightarrow{OP}$=(2cos($\frac{π}{2}$+x),1),$\overrightarrow{OQ}$=(sin($\frac{3π}{2}$-x),cos2x),定義函數(shù)f(x)=$\overrightarrow{OP}$•$\overrightarrow{OQ}$
(1)求函數(shù)f(x)的表達式,并指出其最值;
(2)已知$f(\frac{x}{2})=\frac{1}{5},x∈(-\frac{π}{2},0),求f(-\frac{x}{2})$.
(3)在銳角三角形ABC中,角A,B,C的對邊分別為a,b,c,且f(A)=1,bc=8,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.(1)過點P(3,2),且在x軸上的截距等于y軸上的截距2倍的直線方程;
(2)若一直線被直線4x+y+6=0和3x-5y-6=0截得的線段的中點恰好在坐標原點,求這條直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.(1)求函數(shù)$f(x)=lg(2cosx-1)+\sqrt{49-{x^2}}$的定義域;
(2)計算$3sin(-{1200°})tan(-\frac{π}{6})-cos{585°}tan(-\frac{37}{4}π)$的值;
(3)計算${lg^2}5+lg2lg50+{2^{1+\frac{1}{2}{{log}_2}5}}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.如果一個水平放置的圖形的斜二測直觀圖是一個底角為60°,腰和上底均為1的等腰梯形,那么原平面圖形的面積是$\frac{{3\sqrt{6}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.-330°化成弧度制是( 。
A.$-\frac{4}{3}π$B.$-\frac{5}{3}π$C.$-\frac{7}{6}π$D.$-\frac{11}{6}π$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.將各項均為正數(shù)的數(shù)列{an}排成如圖所示的三角形數(shù)陣(第n行有n個數(shù),同一行中,下標小的數(shù)排在左邊),bn表示數(shù)陣中,第n行、第1列的數(shù).已知數(shù)列{bn}為等比數(shù)列,且從第3行開始,各行均構(gòu)成公差為d的等差數(shù)列(第3行的3個數(shù)構(gòu)成公差為d的等差數(shù)列;第4行的4個數(shù)構(gòu)成公差為d的等差數(shù)列,…),a1=1,a12=17,a18=34.
(1)求數(shù)陣中第m行、第n列的數(shù)A(m,n)(用m,n表示);
(2)求a2014的值;
(3)2014是否在該數(shù)陣中?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,已知平面α∥平面β,點A,B∈α,點C,D∈β,且AC∥BD,求證:AC=BD.

查看答案和解析>>

同步練習冊答案