(2012•吉林二模)戶外運(yùn)動(dòng)已經(jīng)成為一種時(shí)尚運(yùn)動(dòng),某單位為了了解員工喜歡戶外運(yùn)動(dòng)是否與性別有關(guān),決定從本單位全體650人中采用分層抽樣的辦法抽取50人進(jìn)行了問卷調(diào)查,得到了如下列聯(lián)表:
喜歡戶外運(yùn)動(dòng) 不喜歡戶外運(yùn)動(dòng) 合計(jì)
男性 5
女性 10
合計(jì) 50
已知在這50人中隨機(jī)抽取1人抽到喜歡戶外運(yùn)動(dòng)的員工的概率是
3
5

(Ⅰ) 請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;
(Ⅱ)求該公司男、女員各多少名;
(Ⅲ)是否有99.5%的把握認(rèn)為喜歡戶外運(yùn)動(dòng)與性別有關(guān)?并說明你的理由;
下面的臨界值表僅供參考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d
分析:(Ⅰ)根據(jù)在全部50人中隨機(jī)抽取1人的概率是
3
5
,可得喜歡戶外活動(dòng)的男女員工共30人,其中男員工20人,從而可得列聯(lián)表;
(Ⅱ)該公司男員工抽取的概率為
25
50
,由此可得該公司男、女員工的人數(shù);
(Ⅲ)計(jì)算K2,與臨界值比較,即可得到結(jié)論.
解答:解:(Ⅰ)∵在全部50人中隨機(jī)抽取1人的概率是
3
5
,
∴喜歡戶外活動(dòng)的男女員工共30人,其中男員工20人,列聯(lián)表補(bǔ)充如下:
喜歡戶外運(yùn)動(dòng) 不喜歡戶外運(yùn)動(dòng) 合計(jì)
男性 20 5 25
女性 10 15 25
合計(jì) 30 20 50
…(3分)
(Ⅱ)該公司男員工人數(shù)為
25
50
×650=325
,則女員工325人.…(6分)
(Ⅲ)K2=
50(20×15-10×5)2
30×20×25×25
≈8.333>7.879
,…(10分)
∴有99.5%的把握認(rèn)為喜歡戶外運(yùn)動(dòng)與性別有關(guān).…(12分)
點(diǎn)評(píng):本題考查概率與統(tǒng)計(jì)知識(shí),考查獨(dú)立性檢驗(yàn),正確計(jì)算是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•吉林二模)設(shè)函數(shù)f(x)=
1-a
2
x2+ax-lnx(a∈R)

(Ⅰ) 當(dāng)a=1時(shí),求函數(shù)f(x)的極值;
(Ⅱ)當(dāng)a>1時(shí),討論函數(shù)f(x)的單調(diào)性.
(Ⅲ)若對(duì)任意a∈(3,4)及任意x1,x2∈[1,2],恒有
(a2-1)
2
m+ln2>|f(x1)-f(x2)|
成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•吉林二模)設(shè)集合A={x|0≤x<1},B={x|1≤x≤2},函數(shù)f(x)=
2x,(x∈A)
4-2x,(x∈B)
,x0∈A且f[f(x0)]∈A,則x0的取值范圍是
log2
3
2
,1
log2
3
2
,1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•吉林二模)設(shè)函數(shù)f(x)=
1-a2
x2+ax-lnx (a∈R)
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的極值;
(Ⅱ)當(dāng)a>1時(shí),討論函數(shù)f(x)的單調(diào)性.
(Ⅲ)若對(duì)任意a∈(2,3)及任意x1,x2∈[1,2],恒有ma+ln2>|f(x1)-f(x2)|成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•吉林二模)△ABC內(nèi)角A,B,C的對(duì)邊分別是a,b,c,若c=2
3
b
sin2A-sin2B=
3
sinBsinC
,則A=
π
6
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•吉林二模)執(zhí)行程序框圖,若輸出的結(jié)果是
15
16
,則輸入的a為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案