精英家教網 > 高中數學 > 題目詳情
函數f(x)=
2-x-2
的定義域是(  )
A、[-1,+∞)
B、(+∞,]
C、(-∞,-1]
D、(-1,0]
分析:根據函數式是一個開偶次方的式子,得到被開方數要大于或等于0,得到以2我底的指數不等式的運算,根據這個指數式是一個增函數,求出自變量的范圍.
解答:解:∵函數f(x)=
2-x-2
,
∴2-x-2≥0
∴2-x≥2,
∴-x≥1,
∴x≤-1
故選C.
點評:本題考查函數的定義域及其求法,本題是一個基礎題,這種題目一般不會單獨出現,一般是一個解答題目的一個小的環(huán)節(jié),注意不等式的解法.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

8、已知函數f(x)是定義在R上的偶函數,且滿足f(x+1)+f(x)=3,當x∈[0,1]時,f(x)=2-x,則f(-2 009.9)=
1.9

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

下面對命題“函數f(x)=x+
1
x
是奇函數”的證明不是綜合法的是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

函數f(x)為定義在R上的偶函數,且滿足f(x+1)+f(x)=1,當x∈[1,2]時,f(x)=2-x,則f(-2013)=( 。

查看答案和解析>>

科目:高中數學 來源:徐州模擬 題型:解答題

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案