【題目】已知的三邊長(zhǎng)分別是,.下列說(shuō)法正確的是(

A.所在直線為旋轉(zhuǎn)軸,將此三角形旋轉(zhuǎn)一周,所得旋轉(zhuǎn)體的側(cè)面積為

B.所在直線為旋轉(zhuǎn)軸,將此三角形旋轉(zhuǎn)一周,所得旋轉(zhuǎn)體的體積為

C.所在直線為旋轉(zhuǎn)軸,將此三角形旋轉(zhuǎn)一周,所得旋轉(zhuǎn)體的側(cè)面積為

D.所在直線為旋轉(zhuǎn)軸,將此三角形旋轉(zhuǎn)一周,所得旋轉(zhuǎn)體的體積為

【答案】AD

【解析】

所在直線為軸旋轉(zhuǎn)時(shí),所得旋轉(zhuǎn)體是圓錐,求出其側(cè)面積和體積,可知A正確,B錯(cuò)誤;以所在直線為軸旋轉(zhuǎn)時(shí),所得旋轉(zhuǎn)體是圓錐,求出其側(cè)面積和體積,可知故C錯(cuò)誤,D正確,從而可得答案.

所在直線為軸旋轉(zhuǎn)時(shí),所得旋轉(zhuǎn)體是底面半徑為3,母線長(zhǎng)為5,高為4的圓錐,其側(cè)面積為,體積為,故A正確,B錯(cuò)誤;

所在直線為軸旋轉(zhuǎn)時(shí),所得旋轉(zhuǎn)體是底面半徑為4,母線長(zhǎng)為5,高為3的圓錐,側(cè)面積為,體積為,故C錯(cuò)誤,D正確.

故選:AD.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩個(gè)同學(xué)進(jìn)行定點(diǎn)投籃游戲,已知他們一次投籃中的概率均為,且各次投籃的結(jié)果互不影響.甲同學(xué)決定投5次,乙同學(xué)決定投中1次就停止,否則就繼續(xù)投下去,但投籃次數(shù)不超過(guò)5次.

(1)甲同學(xué)至少有4次投中的概率;

(2)乙同學(xué)投籃次數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=ex-x2+axR,曲線y=fx)在(0,f(0))處的切線方程為y=bx

(1)求fx)的解析式;

(2)當(dāng)xR時(shí),求證:fx)≥-x2+x;

(3)若fx)≥kx對(duì)任意的x∈(0,+∞)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】個(gè)人排成一排,在下列情況下,各有多少種不同排法?

1)甲不在兩端;

2)甲、乙、丙三個(gè)必須在一起;

3)甲、乙必須在一起,且甲、乙都不能與丙相鄰.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,不過(guò)原點(diǎn)的直線與橢圓交于A、B兩點(diǎn).

(1)求面積的最大值.

(2)是否存在橢圓,使得對(duì)于橢圓的每一條切線與橢圓均相交,設(shè)交于A、B兩點(diǎn),且恰取最大值?若存在,求出該橢圓;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列為等差數(shù)列,,數(shù)列的前項(xiàng)和為,若對(duì)一切,恒有,則能取到的最大整數(shù)是( )

A. 6 B. 7 C. 8 D. 9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名學(xué)生的課外體育鍛煉平均每天運(yùn)動(dòng)的時(shí)間(單位:分鐘)進(jìn)行調(diào)查,將收集的數(shù)據(jù)分成六組,并作出頻率分布直方圖(如圖),將日均課外體育鍛煉時(shí)間不低于40分鐘的學(xué)生評(píng)價(jià)為“課外體育達(dá)標(biāo)”.

(1)請(qǐng)根據(jù)直方圖中的數(shù)據(jù)填寫(xiě)下面的列聯(lián)表,并通過(guò)計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?

(2)現(xiàn)按照“課外體育達(dá)標(biāo)”與“課外體育不達(dá)標(biāo)”進(jìn)行分層抽樣,抽取8人,再?gòu)倪@8名學(xué)生中隨機(jī)抽取3人參加體育知識(shí)問(wèn)卷調(diào)查,記“課外體育不達(dá)標(biāo)”的人數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量,向量與向量的夾角為,且.

(1)求向量;

(2)設(shè)向量,向量,其中,若,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,其中.

(Ⅰ) 判斷函數(shù)上的單調(diào)性;

(Ⅱ) 設(shè)函數(shù)的定義域?yàn)?/span>,且有極值點(diǎn).

(ⅰ) 試判斷當(dāng)時(shí), 是否滿足題目的條件,并說(shuō)明理由;

(ⅱ) 設(shè)函數(shù)的極小值點(diǎn)為,求證: .

查看答案和解析>>

同步練習(xí)冊(cè)答案