精英家教網(wǎng)已知點(diǎn)P (4,4),圓C:(x-m)2+y2=5(m<3)與橢圓E:
x2
a2
+
y2
b2
=1
(a>0,b>0)的一個(gè)公共點(diǎn)為A(3,1),F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點(diǎn),直線(xiàn)PF1與圓C相切.
(1)求m的值與橢圓E的方程.
(2)設(shè)D為直線(xiàn)PF1與圓C的切點(diǎn),在橢圓E上是否存在點(diǎn)Q,使△PDQ是以PD為底的等腰三角形?若存在,請(qǐng)指出共有幾個(gè)這樣的點(diǎn)?并說(shuō)明理由.
分析:(1)把點(diǎn)A代入圓的方程求得m,設(shè)F1(-c,0)則直線(xiàn)PF1的方程可表示出來(lái),根據(jù)直線(xiàn)PF1與圓C相切利用點(diǎn)到直線(xiàn)的距離求得c,進(jìn)而把點(diǎn)(3,1)代入橢圓方程,求得a和b的關(guān)系式,同時(shí)根據(jù)a2-b2=c3,求得a和b的另一個(gè)關(guān)系式,最后聯(lián)立求得a和b.則橢圓的方程可得.
(2)把直線(xiàn)方程與圓的方程聯(lián)立求得切點(diǎn)坐標(biāo),進(jìn)而根據(jù)P的坐標(biāo)求得線(xiàn)段PD的中點(diǎn)進(jìn)而根據(jù)橢圓的右焦點(diǎn)求得直線(xiàn)MF2的斜率進(jìn)而求得其垂直平線(xiàn)的斜率,進(jìn)而判斷出線(xiàn)段PD的垂直平分線(xiàn)與橢圓有兩個(gè)交點(diǎn)判斷出在橢圓上存在兩個(gè)點(diǎn)Q,使△PDQ是以PD為底的等腰三角形.
解答:精英家教網(wǎng)解(1)∵點(diǎn)A(3,1)在圓C上,
∴(3-m)2+1=5
又m<3,∴m=1
設(shè)F1(-c,0),∵P(4,4)
∴直線(xiàn)PF1的方程
為4x-(4+c)y+4c=0
∵直線(xiàn)PF1與圓C相切
|4+4c|
16+(4+c)2
=
5
(c>0)
即c=4
a2-b2=16
9
a2
+
1
b2
=1
解得
a2=18
b2=2

∴橢圓E的方程是
x2
18
+
y2
2
=1

(2)直線(xiàn)PF1的方程為x-2y+4=0
x-2y+4=0
(x-1)2+y2=5
得切點(diǎn)D(0,2)
又∵P(4,4),∴線(xiàn)段PD的中點(diǎn)為M(2,3)
又∵橢圓右焦點(diǎn)F2(4,0)kMF2=
3
2-4
=-
3
2

kPD=
1
2
,∴線(xiàn)段PD的垂直平分線(xiàn)的斜率為-2
-2<-
3
2
,∴線(xiàn)段PD的垂直平分線(xiàn)與橢圓有兩個(gè)交點(diǎn)
即在橢圓上存在兩個(gè)點(diǎn)Q,使△PDQ是以PD為底的等腰三角形.
點(diǎn)評(píng):本題主要考查了直線(xiàn)與圓錐曲線(xiàn)的綜合問(wèn)題.位置關(guān)系是歷年高考命題的熱點(diǎn);試題具有一定的綜合性,覆蓋面大,平時(shí)應(yīng)注意多訓(xùn)練.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知點(diǎn)P(4,4),圓C:(x-m)2+y2=5(m<3)與橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)有一個(gè)公共點(diǎn)A(3,1),F(xiàn)1、F2分別是橢圓的左、右焦點(diǎn),直線(xiàn)PF1與圓C相切.
(Ⅰ)求m的值與橢圓E的方程;
(Ⅱ)設(shè)Q為橢圓E上的一個(gè)動(dòng)點(diǎn),求
AP
AQ
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知點(diǎn)P(4,4),圓C:(x-m)2+y2=5(m<3)與橢圓E:
x2
a2
+
y2
b2
=1 (a>b>0)
有一個(gè)公共點(diǎn)A(3,1),F(xiàn)1、F2分別是橢圓的左、右焦點(diǎn),直線(xiàn)PF1與圓C相切.
(1)求直線(xiàn)PF1的方程;
(2)求橢圓E的方程;
(3)設(shè)Q為橢圓E上的一個(gè)動(dòng)點(diǎn),求證:以QF1為直徑的圓與圓x2+y2=18相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(4,4),圓C:(x-m)2+y2=5(m<3)與橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
有一個(gè)公共點(diǎn)A(3,1),F(xiàn)1,F(xiàn)2分別是橢圓的左右焦點(diǎn),直線(xiàn)PF1與圓C相切.
(1)求m的值; 
(2)求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省杭州市長(zhǎng)河高三市二測(cè)?紨(shù)學(xué)理卷 題型:解答題

(本小題滿(mǎn)分15分)已知點(diǎn)P(4,4),圓C與橢圓E:

有一個(gè)公共點(diǎn)A(3,1),F1F2分別是橢圓的左.右焦點(diǎn),直線(xiàn)PF1與圓C相切.

(1)求m的值與橢圓E的方程;

(2)設(shè)Q為橢圓E上的一個(gè)動(dòng)點(diǎn),求的范圍.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案