公差不為0的等差數(shù)列{an}中,有2a2-a72+2a12=0,數(shù)列{bn}是各項為正數(shù)的等比數(shù)列,且b7=a7,則log4b1+log4b2++log4b13=(  )
分析:利用等差數(shù)列的性質可把原式化簡可得4a7-a72=0,從而可求a7,再由等比數(shù)列的性質可得b5•b9=b72,從而可求.
解答:解:由等差數(shù)列的性質可得,a2+a12=2a7,
由2a2-a72+2a12=0可得4a7-a72=0,
a7=0或a7=4,
當a7=0時,b7=a7=0不符,舍去.
當a7=4時,b7=4,
b1•b13=b72=16,
∴l(xiāng)og4b1+log4b2+…+log4b13
=log4(b1×b2×…×b13
=log4(b1b13)6
=log4166=12.
故選C.
點評:本題主要考查了等差數(shù)列(若m+n=p+q,則再等差數(shù)列中有am+an=ap+aq;在等比數(shù)列中有am•an=ap•aq)與等比數(shù)列的性質的綜合應用,利用性質可以簡化基本運算.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知公差不為0的等差數(shù)列{an}滿足a1,a3,a4成等比關系,Sn為{an}的前n項和,則
S3-S2
S5-S3
的值為( 。
A、2
B、3
C、
1
5
D、不存在

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知公差不為0的等差數(shù)列{an}的首項a1=2,且a1,a2,a4成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設數(shù)列{an}的前n項和為Sn,求數(shù)列{
1Sn
}
的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若Sn是公差不為0的等差數(shù)列{an}的前n項和,則S1,S2,S4成等比數(shù)列.
(1)求數(shù)列S1,S2,S4的公比;
(2)若S2=4,求{an}的通項公式;
(3)在(2)條件下,若bn=an-14,求{|bn|}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知公差不為0的等差數(shù)列{an}滿足a2=3,a1,a3,a7成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)數(shù)列{bn}滿足bn=
an
an+1
+
an+1
an
,求數(shù)列{bn}的前n項和Sn
(Ⅲ)設cn=2n(
an+1
n
-λ)
,若數(shù)列{cn}是單調遞減數(shù)列,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設{an}是公差不為0的等差數(shù)列,a1=2,且a1,a3,a6成等比數(shù)列,則a5的值為
4
4

查看答案和解析>>

同步練習冊答案