設(shè)斜率為1的直線l過拋物線y2=ax(a>0)的焦點F,且和y軸交于點A,若△OAF(O為坐標(biāo)原點)的面積為8,則a的值為________.
16
依題意,有F(,0),直線l為y=x-,所以A(0,-),△OAF的面積為××=8.解得a=±16,依題意,只能取a=16.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

點P為直線x+2y-1=0上的一個動點,F(xiàn)1、F2為雙曲線
x2
4
-
y2
5
=1
的左、右焦點,則
PF1
PF2
的最小值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線關(guān)于軸對稱,它的頂點在坐標(biāo)原點,并且經(jīng)過點,若點到該拋物線焦點的距離為3,則=(   )
A.B.C.4D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,曲線C1是以原點O為中心,F(xiàn)1,F(xiàn)2為焦點的橢圓的一部分.曲線C2是以O(shè)為頂點,F(xiàn)2為焦點的拋物線的一部分,A是曲線C1和C2的交點且∠AF2F1為鈍角,若|AF1|=,|AF2|=

(1)求曲線C1和C2的方程;
(2)設(shè)點C是C2上一點,若|CF1|=|CF2|,求△CF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線l1:4x-3y+11=0和直線l2:x=-1,拋物線y2=4x上一動點P到直線l1和直線l2的距離之和的最小值是(  )
A.2B.3C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知F是拋物線y2=x的焦點,A,B是該拋物線上的兩點,|AF|+|BF|=3,則線段AB的中點到y(tǒng)軸的距離為(  )
A.B.C.D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線的準(zhǔn)線方程為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線C:的焦點為F,過點F傾斜角為60°的直線l與拋物線C在第一、四象限分別交于A、B兩點,則的值等于(    )
(A)2          (B)3          (C)4        (D)5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過拋物線x2=2py(p>0)焦點的直線與拋物線交于不同的兩點A、B,則拋物線上A、B兩點處的切線斜率之積是(   )
A.P2          B.-p2         C.-1       D.1

查看答案和解析>>

同步練習(xí)冊答案