下列函數(shù)中,定義域是(0,+∞)的函數(shù)是( 。
A、y=x3
B、y=x
1
2
C、y=x-
1
2
D、y=x
1
3
考點(diǎn):函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:分別求出選項(xiàng)中四個函數(shù)的定義域,即可判斷滿足題意的函數(shù)是什么.
解答: 解:對于A,y=x3的定義域是(-∞,+∞),∴不滿足題意;
對于B,y=x
1
2
的定義域是[0,+∞),∴不滿足題意;
對于C,y=x-
1
2
的定義域是(0,+∞),∴滿足題意;
對于D,y=x
1
3
的定義域是(-∞,+∞),∴不滿足題意.
故選:C.
點(diǎn)評:本題考查了求定義域的應(yīng)用問題,是基礎(chǔ)題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的值域.
(1)y=
cosx
2cosx+1
;
(2)y=
1+sinx
3+cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷下列說法:
①已知用二分法求方程3x+3x-8=0在x∈(1,2)內(nèi)的近似解過程中得:f(1)<0,f(1.5)>0,f(1.25)<0,則方程的根落在區(qū)間(1.25,1.5)
②y=tanx在它的定義域內(nèi)是增函數(shù).
③函數(shù)y=
tanx
1-tan2x
的最小正周期為π
④函數(shù)f(x)=
1+sinx-cosx
1+sinx+cosx
是奇函數(shù)
⑤已知
AB
=(x,2x),
AC
=(-3x,2),若∠BAC是鈍角,則x的取值范圍是x<0或x>
4
3
             
其中說法正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算2sin405°-4cos390°+sin1125°-2cos1485°+2sin780°的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=ax(a>0且a≠1)的圖象經(jīng)過點(diǎn) (3,8),則函數(shù)的解析式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,已知前15項(xiàng)的和S15=90,則a8=( 。
A、
45
2
B、12
C、
45
4
D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,A={x|0≤x<8 },B={x|1<x<9},求
(Ⅰ)(∁UA)∪B;
(Ⅱ)A∩(∁UB)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在坐標(biāo)原點(diǎn)的雙曲線C的右焦點(diǎn)為(2,0),左頂點(diǎn)為(-
3
,0).
(1)求雙曲線C的方程;
(2)若直線l:y=kx+
2
與雙曲線C恒有兩個不同的公共點(diǎn)A,B,且
OA
OB
>2(其中O為坐標(biāo)原點(diǎn)),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:“橢圓
x2
5
+
y2
a
=1的焦點(diǎn)在x軸上”,命題q:只有一個實(shí)數(shù)x滿足不等式x2+2ax+2a≤0.若命題“p或q”是假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案