設(shè)函數(shù)f(x)=lg(x2-x-2)的定義域?yàn)榧螦,函數(shù)的定義域?yàn)榧螧.已知α:x∈A∩B,β:x滿足2x+p<0,且α是β的充分條件,求實(shí)數(shù)p的取值范圍.
【答案】分析:先解不等式x2-x-2>0得集合A,再解不等式可得集合B,從而可得A∩B,再解不等式2x+p<0得集合C,由α是β的充分條件得A∩B⊆C,由集合間的包含關(guān)系可得p的取值范圍
解答:解:依題意,得A={x|x2-x-2>0}=(-∞,-1)∪(2,+∞),,于是可解得A∩B=(2,3].設(shè)集合C={x|2x+p<0},則.由于α是β的充分條件,
所以A∩B⊆C.則須滿足.所以,實(shí)數(shù)p的取值范圍是(-∞,-6).
點(diǎn)評(píng):本題考查了充分條件的判斷與集合的關(guān)系,訓(xùn)練了解不等式的能力,解題時(shí)要把握推理方向,準(zhǔn)確運(yùn)算
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
lg|x|,(x<0)
2x-1,(x≥0)
,若f(x0)>0則x0取值范圍是( 。
A、(-∞,-1)∪(1,+∞)
B、(-∞,-1)∪(0,+∞)
C、(-1,0)∪(0,1)
D、(-1,0)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=lg(x2+ax-a-1),給出下述命題:①f(x)有最小值;②當(dāng)a=0時(shí),f(x)的值域?yàn)镽;③若f(x)在區(qū)間[2,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是a≥-4.則其中正確的命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

24、關(guān)于x的不等式lg(|x+3|-|x-7|)<m.
(Ⅰ)當(dāng)m=1時(shí),解此不等式;
(Ⅱ)設(shè)函數(shù)f(x)=lg(|x+3|-|x-7|),當(dāng)m為何值時(shí),f(x)<m恒成立?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=lg(x2+ax-a),若f(x)的值域?yàn)镽,則a的取值范圍是
(-∞,-4]∪[0+∞)
(-∞,-4]∪[0+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

現(xiàn)有下列命題:
①設(shè)a,b為正實(shí)數(shù),若a2-b2=1,則a-b<1;
②△ABC若acosA=bcosB,則△ABC是等腰三角形;
③數(shù)列{n(n+4)(
2
3
n中的最大項(xiàng)是第4項(xiàng);
④設(shè)函數(shù)f(x)=
lg|x-1|,x≠1
0,x=1
則關(guān)于x的方程f2(x)+2f(x)=0有4個(gè)解;
⑤若sinx+siny=
1
3
,則siny-cos2x的最大值是
4
3

其中的真命題有
①③
①③
.(寫(xiě)出所有真命題的編號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案