△ABC中,角A,B,C成等差數(shù)列,a,b,c分別為A,B,C的對邊,則=   
【答案】分析:因為A,B,C成等差數(shù)列,所以2B=A+C,再根據(jù)A+B+C=180°,求出B=60°然后根據(jù)余弦定理得:b2=a2+c2-2accos60°化簡后把b2的值代入到中求出值即可.
解答:解:根據(jù)角A,B,C成等差數(shù)列得到2B=A+C,而三角形的內(nèi)角和為180°即A+B+C=180°即可求出B=60°
利用余弦定理得:b2=a2+c2-2accos60°=a2+c2-ac;
===3.
故答案為3
點評:考查學(xué)生靈活運用等差數(shù)列的性質(zhì)的能力,靈活運用余弦定理化簡求值,以及運用整體代換的數(shù)學(xué)思想解決實際問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•豐臺區(qū)一模)在△ABC中,角A,B,C所對的邊分別為a,b,c,且asinB-bcosC=ccosB.
(Ⅰ)判斷△ABC的形狀;
(Ⅱ)若f(x)=
1
2
cos2x-
2
3
cosx+
1
2
,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•德州一模)已知函數(shù)f(x)=
3
sinxcosx-cos2x+
1
2
(x∈R)

(I)求函數(shù)f(x)的最小正周期及在區(qū)間[0,
12
]
上的值域;
(Ⅱ)在△ABC中,角A、B、C所對的邊分別是a、b、c,又f(
A
2
+
π
3
)=
4
5
,b=2
,面積S△ABC=3,求邊長a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•盧灣區(qū)一模)在△ABC中,角A,B,C的對邊分別為a,b,c,且a=2bcosC,b+c=3a.求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•石景山區(qū)一模)在△ABC中,角A,B,C所對應(yīng)的邊分別為a,b,c,且(2a-c)cosB=bcosC.
(Ⅰ)求角B的大;
(Ⅱ)若A=
π4
,a=2
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,角A、B、C所對的邊長分別為a、b、c,向量
m
=(1,cosB),
n
=(sinB,-
3
)
,且
m
n

(1)求角B的大。
(2)若△ABC面積為
3
3
2
,3ac=25-b2,求a,c的值.

查看答案和解析>>

同步練習(xí)冊答案