精英家教網 > 高中數學 > 題目詳情
已知a1=
1
4
,Sn=
Sn-1
2Sn-1+1
(n≥2),求an
考點:數列遞推式
專題:等差數列與等比數列
分析:首先利用關系式的變形求出數列:{
1
Sn
}是以{
1
S1
}為首2為公差的等差數列.進一步確定Sn=
1
2n+2
,最后利用前n項和法求出數列an=
1
2n+2
-
1
2n
解答: 解:已知:Sn=
Sn-1
2Sn-1+1

則:
1
Sn
=
2Sn-1+1
Sn-1
=
1
Sn-1
+2

1
Sn
-
1
Sn-1
=2
(n≥2)
所以數列{
1
Sn
}是以{
1
S1
}為首2為公差的等差數列.
所以:
1
Sn
=4+2(n-1)=2n+2
Sn=
1
2n+2

當n=1時S1=
1
4
=a1

所以n≥1,Sn=
1
2n+2

an=Sn-Sn-1=
1
2n+2
-
1
2n

故答案為:an=
1
2n+2
-
1
2n
點評:本題考查的知識點:數列的遞推關系式,等差數列的通項公式的應用即利用前n項和求數列的通項公式.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

若不等式|a-1|>
1
1×2×3
+
1
2×3×4
+…+
1
n(n+1)(n+2)
對一切n∈N+恒成立,則實數a的取值范圍是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等差數列{an}的首項a1=1,公差d>0,等比數列{bn},滿足b2=a2,b3=a5,b4=a14,則數列{an}的通項公式為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

寫出命題:“若x≤2,則x>1”的否命題:
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知集合A={x||x|<3},集合B={x|x-2≥0},則A∪(∁RB)等于( 。
A、(-∞,3]
B、(-∞,3)
C、[2,3)
D、(-3,2]

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓C1:(x+m)2+(y-m)2=16和圓C2:(x-1)2+(y-2)2=1相切,求m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知命題p:方程x2+mx+1=0有兩個不相等的實根,命題q:不等式mx2-2(m+1)x+m+1<0對任意的實數x恒成立.若p∨q為假,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知集合A={x|x2-4x-5>0},B={x|ax2+bx+c≤0},若A∩B=∅,A∪B=R,則
c2
a
+
a
b2
的最小值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數f(x)=3|cosx|-cosx+m,x∈(0,2π),有兩個互異零點,則實數m的取值范圍是
 

查看答案和解析>>

同步練習冊答案