【題目】棱臺的三視圖與直觀圖如圖所示.
(1)求證:平面平面
;
(2)在線段上是否存在一點
,使
與平面
所成的角的正弦值為
?若存在,指出點
的位置;若不存在,說明理由.
【答案】(1)見解析.(2)在
的中點.
【解析】試題分析:(1)首先根據(jù)三視圖特征可得平面
,
為正方形,所以
.再由
即可得線面垂直從而得出面面垂直(2)直接建立空間坐標(biāo)系寫出各點坐標(biāo)求出法向量,在根據(jù)向量的交角公式得出等式求出
解析:(1)根據(jù)三視圖可知平面
,
為正方形,
所以.
因為平面
,所以
,
又因為,所以
平面
.
因為平面
,所以平面
平面
.
(2)以為坐標(biāo)原點,
所在直線分別為
軸建立空間直角坐標(biāo)系,如圖所示,
根據(jù)三視圖可知為邊長為2的正方形,
為邊長為1的正方形,
平面
,且
.
所以,
,
,
,
.
因為在
上,所以可設(shè)
.
因為,所以
.
所以,
.
設(shè)平面的法向量為
,
根據(jù)
令,可得
,所以
.
設(shè)與平面
所成的角為
,
所以
.
所以,即點
在
的中點位置.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)
的單調(diào)遞減區(qū)間;
(2)若,求函數(shù)
在區(qū)間
上的最大值;
(3)若在區(qū)間
上恒成立,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求
的單調(diào)區(qū)間;
(2)若在區(qū)間
上是增函數(shù),求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱柱中,
平面
,
,
,
,
,
為
的中點.
(Ⅰ)求四棱錐的體積;
(Ⅱ)設(shè)點在線段
上,且直線
與平面
所成角的正弦值為
,求線段
的長度;
(Ⅲ)判斷線段上是否存在一點
,使得
?(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某糧庫擬建一個儲糧倉如圖所示,其下部是高為2的圓柱,上部是母線長為2的圓錐,現(xiàn)要設(shè)計其底面半徑和上部圓錐的高,若設(shè)圓錐的高為
,儲糧倉的體積為
.
(1)求關(guān)于
的函數(shù)關(guān)系式;(圓周率用
表示)
(2)求為何值時,儲糧倉的體積最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某商場旅游鞋的日銷售情況,現(xiàn)抽取部分顧客購鞋的尺碼,將所得數(shù)據(jù)繪成如圖所示頻率分布直方圖,已知圖中從左到右前三組的頻率之比為1:2:3,第二組的頻數(shù)為10.
(1)用頻率估計概率,求尺碼落在區(qū)間(37.5,43.5]概率約是多少?
(2)從尺碼落在區(qū)間(37.5,39.5](43.5,45.5]顧客中任意選取兩人,記在區(qū)間(43.5,45.5]的人數(shù)為X,求X的分布列及數(shù)學(xué)期望EX.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從2名男生和2名女生中任意選擇兩人在星期六、星期日參加某公益活動,每天一人,則星期六安排一名男生、星期日安排一名女生的概率為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強總理在本屆政府工作報告中向全國人民發(fā)出的口號.某生產(chǎn)企業(yè)積極響應(yīng)號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格試銷,得到一組銷售數(shù)據(jù),如下表所示:
(已知,
).
(1)求出的值;
(2)已知變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量
(件)關(guān)于試銷單價
(元)的線性回歸方程
;(3)用
表示用正確的線性回歸方程得到的與
對應(yīng)的產(chǎn)品銷量的估計值.當(dāng)銷售數(shù)據(jù)
的殘差的絕對值
時,則將銷售數(shù)據(jù)
稱為一個“好數(shù)據(jù)”.現(xiàn)從6個數(shù)據(jù)中任取2個,求抽取的2個數(shù)據(jù)中至少有1個是“好數(shù)據(jù)”的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com