7.將y=cosx的圖象上的所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮小到原來的一半,然后再將圖象沿x軸負(fù)方向平移$\frac{π}{4}$個單位,則所得圖象的解析式為(  )
A.y=sinxB.y=-sin2xC.$y=cos({2x+\frac{π}{4}})$D.$y=cos({\frac{x}{2}+\frac{π}{4}})$

分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:將y=cosx的圖象上的所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮小到原來的一半,可得y=cos2x的圖象;
然后再將圖象沿x軸負(fù)方向平移$\frac{π}{4}$個單位,則所得圖象的解析式為y=cos2(x+$\frac{π}{4}$)=-sin2x,
故選:B.

點(diǎn)評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)的$f(x)={2^{{x^2}+x-3}}$單調(diào)增區(qū)間是(-$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.畫出下列函數(shù)f(x)的圖象并根據(jù)函數(shù)圖象寫出函數(shù)f(x)的單調(diào)區(qū)間.
(1)$f(x)=\left\{{\begin{array}{l}{3x+4,-1≤x≤0}\\{{x^2}-2x+4,x>0}\end{array}}\right.$
(2)f(x)=|x+2|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知$p:-2≤1-\frac{x-1}{3}≤2,q:({x+m-1})({x-m-1})≤0({m>0})$,且q是p的必要不充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知向量$\overrightarrow a,\vec b,|{\vec a}|=1,|{\vec b}|=2$.若對任意單位向量$\vec e$,均有$|{\vec a•\vec e}|+|{\vec b•\vec e}|≤\sqrt{6}$,則$\overrightarrow a•\vec b$的最大值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖,正方體ABCD-A1B1C1D1中,二面角A-B1D1-A1的正切值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)f,g都是由A到A的映射,其對應(yīng)法則如表所示(從上到下),則與f[g(1)]相同的是( 。
表1  映射f的對應(yīng)法則
原像1234
3421
表2  映射g的對應(yīng)法則
原像1234
4312
A.g[f(3)]B.g[f(1)]C.f[f(4)]D.f[f(3)]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.南山中學(xué)實(shí)驗(yàn)學(xué)校2015級入學(xué)考試共設(shè)置60個試室,試室編號為001~060,現(xiàn)根據(jù)試室號,采用系統(tǒng)抽樣的方法,抽取12個試室進(jìn)行抽查,已抽看了007試室號,則下列可能被抽到的試室號是(  )
A.002B.031C.044D.060

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知△ABC的三個頂點(diǎn)均在拋物線x2=y上,邊AC的中線BM∥y軸,|BM|=2,則△ABC的面積為( 。
A.2B.2$\sqrt{2}$C.4D.8

查看答案和解析>>

同步練習(xí)冊答案