10.設(shè)扇形的半徑長為2cm,面積為4cm2,則扇形的圓心角的弧度數(shù)是( 。
A.1B.2C.πD.$\frac{5}{6}$

分析 設(shè)扇形的弧長為2,根據(jù)扇形的半徑和面積,利用扇形面積公式列式算出l=4,再由弧度的定義加以計(jì)算,即可得到該扇形的圓心角的弧度數(shù).

解答 解:設(shè)扇形的圓心角的弧度數(shù)是α,弧長為l,
∵扇形的半徑長r=2cm,面積S=4cm2
∴S=$\frac{1}{2}$lr,即4=$\frac{1}{2}$×l×2,解之得l=4,
因此,扇形圓心角的弧度數(shù)是α=$\frac{l}{r}$=$\frac{4}{2}$=2.
故選:B.

點(diǎn)評 本題給出扇形的半徑和面積,求圓心角的大。疾榱松刃蔚拿娣e公式和弧度制的定義等知識(shí),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.己知函數(shù)f(x)=x3-3x,若過點(diǎn)A(1,m)可作曲線y=f(x)的三條切線,則實(shí)數(shù)m的取值范圍是( 。
A.-1<m<1B.-4<m<4C.-1<m<-2D.-3<m<-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.定義在R上的偶函數(shù)f(x),當(dāng)x≥0時(shí),f(x)=x2+log2(x+1),若f(t)≥f(2),則t的取值范圍是( 。
A.(-∞,-2]B.[2,+∞)C.[-2,2]D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,BD⊥平面ABC,AE∥BD,AB=BC=CA=BD=2AE=2,F(xiàn)為CD中點(diǎn).
(Ⅰ)求證:EF⊥平面BCD
(Ⅱ)求點(diǎn)A到面CDE的距離;
(III)求二面角C-DE-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)y=sin(2x+$\frac{π}{3}$)的最小正周期=π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=Asin(3x+φ)(A>0,0<φ<π),在$x=\frac{π}{12}$時(shí)取得最大值4.
(Ⅰ)求f(x)的單調(diào)增區(qū)間;
(Ⅱ)若$f({\frac{2}{3}α+\frac{π}{12}})=\frac{12}{5}$,求sinα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=-2+\sqrt{10}cosθ}\\{y=\sqrt{10}sinθ}\end{array}\right.$(θ為參數(shù)),曲線C2的極坐標(biāo)方程為ρ=2cosθ+6sinθ.
(1)將曲線C1方程,將曲線C2極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)曲線C1,C2是否相交,若相交請求出公共弦的長,若不相交,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若平面α的一個(gè)法向量為$\overrightarrow{n}$=(0,2,2),A(1,0,2),B(0,-1,4),A∉α,B∈α,則點(diǎn)A到平面
α的距離為( 。
A.1B.2C.$\sqrt{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某學(xué)校對手工社、攝影社兩個(gè)社團(tuán)招新報(bào)名的情況進(jìn)行調(diào)查,得到如下的2×2列聯(lián)表:
手工社攝影社總計(jì)
女生6
男生42
總計(jì)3060
(1)請?zhí)钌仙媳碇兴杖钡奈鍌(gè)數(shù)字;
(2)能否在犯錯(cuò)誤的概率不超過0.05的前提下,認(rèn)為學(xué)生對這兩個(gè)社團(tuán)的選擇與“性別”有關(guān)系?
(注:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d)
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

同步練習(xí)冊答案