橢圓C:
x2
9
+
y2
4
=1
,斜率為k的直線l與橢圓相交于點(diǎn)M,N,點(diǎn)A是線段MN的中點(diǎn),直線OA(O為坐標(biāo)原點(diǎn))的斜率是k′,那么kk′=
-
4
9
-
4
9
分析:設(shè)出直線l與橢圓的兩個(gè)交點(diǎn)的坐標(biāo),把子線l的斜率和OA的斜率用兩點(diǎn)的坐標(biāo)來表示,把兩點(diǎn)的坐標(biāo)代入橢圓方程,作差后整理即可得到答案.
解答:解:設(shè)M(x1,y1),N(x2,y2),
k=
y1-y2
x1-x2
,k=
y1+y2
x1+x2

因?yàn)镸,N在橢圓上,所以
x12
9
+
y12
4
=1

x22
9
+
y22
4
=1

①-②得,
(x1+x2)(x1-x2)
9
=-
(y1+y2)(y1-y2)
4

y1-y2
x1-x2
y1+y2
x1+x2
=-
4
9

kk=-
4
9

故答案為-
4
9
點(diǎn)評(píng):本題考查了直線與圓錐曲線的關(guān)系,涉及弦中點(diǎn)問題,常用的辦法是點(diǎn)差法.此題是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C1:y2=4x的焦點(diǎn)與橢圓C2
x2
9
+
y2
b
=1
的右焦點(diǎn)F2重合,F(xiàn)1是橢圓的左焦點(diǎn).
(1)在△ABC中,若A(-4,0),B(0,-3),點(diǎn)C在拋物線y2=4x上運(yùn)動(dòng),求△ABC重心G的軌跡方程;
(2)若P是拋物線C1與橢圓C2的一個(gè)公共點(diǎn),且∠PF1F2=α,∠PF2F1=β,求cosα•cosβ的值及△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
9
+y2=1及定點(diǎn)A(2,0),點(diǎn)P是橢圓上的動(dòng)點(diǎn),則|PA|的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-2:矩陣與變換
已知圓C:x2+y2=1在矩陣A=
a0
0b
(a>0,b>0)對(duì)應(yīng)的變換作用下變?yōu)闄E圓
x2
9
+
y2
4
=1,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•遼寧)如圖,動(dòng)圓C1x2+y2=
t
2
 
,1<t<3與橢圓C2
x2
9
+y2=1
相交于A,B,C,D四點(diǎn),點(diǎn)A1,A2分別為C2的左,右頂點(diǎn).
(Ⅰ)當(dāng)t為何值時(shí),矩形ABCD的面積取得最大值?并求出其最大面積;
(Ⅱ)求直線AA1與直線A2B交點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓C:
x2
9
+y2=1及定點(diǎn)A(2,0),點(diǎn)P是橢圓上的動(dòng)點(diǎn),則|PA|的最小值為( 。
A.
2
2
B.1C.
1
2
D.
3
2

查看答案和解析>>

同步練習(xí)冊(cè)答案