4.設(shè)l,m是兩條不同直線,α,β是兩個(gè)不同平面,則下列命題中正確的是(  )
A.若l∥α,α∩β=m,則l∥mB.若l⊥α,m⊥α,則l∥m
C.若l∥α,m∥α,則l∥mD.若l∥α,m⊥l,則m⊥α

分析 由線面平行的性質(zhì)定理可判斷A;由線面垂直的判定定理即可判斷B;由線面平行的性質(zhì)定理可判斷C;由線面平行的性質(zhì)定理可判斷D.

解答 解:A.若l∥α,α∩β=m,.則l,m平行或異面,只有l(wèi)?β,才有l(wèi)∥m.故A錯(cuò);
B.若l⊥α,m⊥α,則由線面垂直的性質(zhì)定理得l∥m,故B正確;
C.若l∥α,m∥α,則由線面平行的性質(zhì)可得l,m平行、相交、異面,故C錯(cuò);
D.若l∥α,m⊥l,則m與α平行、相交或在平面內(nèi),故D錯(cuò).
故選B.

點(diǎn)評(píng) 本題主要考查直線與平面平行、垂直的判定與性質(zhì)定理的應(yīng)用,考查空間想象能力,注意定理的條件的全面性,以及直線與平面的位置關(guān)系,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若不等式ax2+bx+c>0的解集是(-1,2),則不等式bx2-ax-c>0的解集為(-∞,-2)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.下列函數(shù)中,在定義域內(nèi)既是奇函數(shù)又是增函數(shù)的是( 。
A.y=lnxB.y=x3-xC.y=-$\frac{1}{x}$D.y=ex-e-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在△ABC中,∠ABC=60°,且AB=5,AC=7,則BC=8 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知a∈R,解關(guān)于x的不等式:ax2-2(a-1)x+a≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=xlnx-$\frac{a}{2}$x2-x+a(a∈R)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(1)求a的取值范圍;
(2)記兩個(gè)極值點(diǎn)分別為x1,x2,且x1<x2,已知λ>0,若不等式e1+λ<x1•x2λ恒成立,求λ的范圍.
(3)證明:$\frac{ln2}{3}$+$\frac{ln3}{4}$+$\frac{ln4}{5}$+…+$\frac{lnn}{{n}^{2}-1}$+(1+$\frac{1}{n}$)n<$\frac{{n}^{2}+n+10}{4}$(n∈N*,n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.不等式($\frac{1}{2}$)${\;}^{2{x}^{2}-6x+9}$≤($\frac{1}{2}$)${\;}^{{x}^{2}+3x+19}$的解集是( 。
A.[-1,10]B.(-∞,-1)∪[10,+∞]C.RD.(-∞,-1]∪[10,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知等腰直角三角形AOB內(nèi)接于拋物線y2=2px(p>0),O為拋物線的頂點(diǎn),OA⊥OB,△AOB的面積為16,F(xiàn)為拋物線的焦點(diǎn),N(-1,0),若M是拋物線上的動(dòng)點(diǎn),則$\frac{|MN|}{|MF|}$的最大值為(  )
A.$\sqrt{3}$B.$\sqrt{2\sqrt{2}-1}$C.$\sqrt{2}$D.$\sqrt{2\sqrt{2}+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知函數(shù)f(x)、g(x)分別是定義在實(shí)數(shù)集上的奇函數(shù)、偶函數(shù),且f(x)+g(x)=x2+ax+2a-1(a為常數(shù)),若f(1)=2,則g(t)=t2+4t-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案