某種產(chǎn)品的廣告費支出x與銷售額y(單位:百萬元)之間有如下關(guān)系
x 2 4 5 6 8
y 3 4 6 5 7
(1)畫出數(shù)據(jù)的散點圖;
(2)假定x與y之間有線性相關(guān)關(guān)系,求其回歸直線方程;
(3)若實際銷售額不少于6百萬元,則廣告費支出應不少于多少?
分析:(1)根據(jù)表中所給的五組數(shù)據(jù),得到五個點的坐標,在平面直角坐標系中畫出散點圖.
(2)先求出橫標和縱標的平均數(shù),得到這組數(shù)據(jù)的樣本中心點,利用最小二乘法求出線性回歸方程的系數(shù),代入樣本中心點求出a的值,寫出線性回歸方程.
(3)根據(jù)y的值要大于6百萬元,列出不等式,解不等式,求出對應的x的范圍,得到若實際銷售額不少于6百萬元,廣告費支出應不少于
85
13
百萬元.
解答:精英家教網(wǎng)解:(1)根據(jù)表中所給的五組數(shù)據(jù),得到五個點的坐標,在平面直角坐標系中畫出散點圖.              
(2)
.
x
=5,
.
y
=5

b=
n
i=1
xiy i-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
=
(2×3+4×4+5×6+6×5+8×7)-5×5×5
(22+42+52+62+82)-5×52
=
13
20

a=
.
y
-b
.
x
=5-
13
20
×5=
7
4

?
y
=
13
20
x+
7
4

(3)由
?
y
=
13
20
x+
7
4
≥6
,得x≥
85
13
.         
答:若實際銷售額不少于6百萬元,
則廣告費支出應不少于
85
13
百萬元.
點評:本題考查線性回歸方程的求法和應用,本題解題的關(guān)鍵是利用最小二乘法求出線性回歸方程的系數(shù),這是解答正確的主要環(huán)節(jié).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

某種產(chǎn)品的廣告費支出x與銷售額y(單位:百萬元)之間有如下對應數(shù)據(jù):
x 2 4 5 6 8
y 30 40 50 60 70
(1)畫出散點圖;
(2)求線性回歸方程;
(3)預測當廣告費支出為7百萬元時的銷售額.參考公式:
b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
=
n
i=1
xiyi-n
.
xy
n
i=1
x
2
i
-nx-2
a=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某種產(chǎn)品的廣告費支出x(百萬元)與銷售額y(百萬元)之間有如下對應數(shù)據(jù):
x 2 4 5 6 8
y 30 40 50 60 70
如果y與x之間具有線性相關(guān)關(guān)系.
(1)作出這些數(shù)據(jù)的散點圖;
(2)求這些數(shù)據(jù)的線性回歸方程
?
y
=
?
b
x+
?
a
;
(3)預測當廣告費支出為9百萬元時的銷售額.
參考公式:用最小二乘法求線性回歸方程系數(shù)公式
?
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
,
?
a
=
.
y
-
?
b
.
x

參考數(shù)據(jù):
5
i=1
xiyi=1390

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某種產(chǎn)品的廣告費支出x與銷售額),之間有如下對應數(shù)據(jù)(單位:百萬元):
x 2 4 5 6 8
y 30 40 60 50 70
(Ⅰ)請畫出這個樣本的散點圖;
(Ⅱ)你能從散點圖中發(fā)現(xiàn)什么結(jié)論?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某種產(chǎn)品的廣告費支出x與銷售額y之間有如下對應數(shù)據(jù):
x∕106 2 4 5 6 8
y∕106 30 40 60 50 70
根據(jù)散點圖分析,x與y具有線性相關(guān)關(guān)系,且線性回歸方程為
y
=6.5x+a
,則a的值為
17.5
17.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某種產(chǎn)品的廣告費支出x與銷售額y(單位:百萬元)之間有如下對應數(shù)據(jù):
x 2 4 5 6 8
y 30 40 60 50 70
(1)畫出散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程
y
=
b
x+
a

(參考公式:b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(x-
.
x
)
2
=
n
i=1
xiyi-n•
.
x
.
y
n
i=1
x
2
i
-n•
.
x
2
;a=
.
y
-b
.
x

查看答案和解析>>

同步練習冊答案