20.如圖,在四棱錐P-ABCD中,PC⊥底面ABCD,底面ABCD是矩形,BC=PC,E,F(xiàn)分別是PA,PB的中點(diǎn).
(1)求證:PB⊥平面CDF;
(2)已知點(diǎn)M是AD的中點(diǎn),點(diǎn)N是AC上一動(dòng)點(diǎn),當(dāng)$\frac{CN}{AC}$為何值時(shí),平面PDN∥平面BEM?

分析 (1)推導(dǎo)出DC⊥PC,DC⊥BC,從而DC⊥PB,再求出CF⊥PB,由此能證明PB⊥平面CDF.
(2)過(guò)點(diǎn)D作交BC于G,連接PG,當(dāng)N是AC與DG的交點(diǎn)時(shí),平面PDN∥平面BEM,由此能求出當(dāng)$\frac{CN}{AC}$=$\frac{1}{3}$時(shí),平面PDN∥平面BEM.

解答 證明:(1)∵PC⊥底面ABCD,底面ABCD是矩形,
∴DC⊥PC,DC⊥BC,又PC∩BC=C,∴DC⊥平面PBC,…(2分)
∴DC⊥PB.…(4分)
∵BC=PC,F(xiàn)為PB的中點(diǎn),∴CF⊥PB.…(5分)
∵DC∩CF=C,∴PB⊥平面CDF.…(6分)
解:(2)過(guò)點(diǎn)D作交BC于G,連接PG,…(7分)
∵M(jìn)是AD的中點(diǎn),∴EM∥PD,…(8分)
∵PD∩DG=D,∴平面PDG∥平面BEM,…(9分)
∴當(dāng)N是AC與DG的交點(diǎn)時(shí),平面PDN∥平面BEM,…(10分)
∴在矩形ABCD中,由題意得$\frac{CN}{AC}=\frac{1}{3}$.
故當(dāng)$\frac{CN}{AC}$=$\frac{1}{3}$時(shí),平面PDN∥平面BEM.…(12分)

點(diǎn)評(píng) 本題考查線面垂直的證明,考查滿(mǎn)足面面平行的點(diǎn)的位置的判斷與求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知命題p:m2+2m-15≤0成立.命題q:方程x2-4mx+1=0有實(shí)數(shù)根.若p為真命題,q為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.給出下面四個(gè)命題(其中m,n,l為空間中不同的直線,α,β是空間中不同的平面)中正確的命題為( 。
A.m∥n,n∥α⇒m∥αB.α⊥β,α∩β=m,l⊥m⇒l⊥β
C.l⊥m,l⊥n,m?α,n?α⇒l⊥αD.m∩n=A,m∥α,m∥β,n∥α,n∥β⇒α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知點(diǎn)$({\sqrt{2},2})$與點(diǎn)$({-2,-\frac{1}{2}})$分別在冪函數(shù)f(x),g(x)的圖象上.
(1)分別求冪函數(shù)f(x),g(x)的解析式,并在同一直角坐標(biāo)系中畫(huà)出兩個(gè)函數(shù)的圖象;
(2)觀察圖象,并指出當(dāng)x為何值時(shí),有:①f(x)>g(x);②f(x)=g(x);③f(x)<g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知$sin2θ-4sin({θ+\frac{π}{3}})sin({θ-\frac{π}{6}})=\frac{{\sqrt{3}}}{3}$,則cos2θ等于(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$-\frac{{\sqrt{3}}}{6}$D.$-\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.要得到函數(shù)y=3cos2x的圖象,只需將函數(shù)$y=3cos({2x+\frac{π}{3}})$的圖象(  )
A.向左平移$\frac{π}{3}$個(gè)單位長(zhǎng)度B.向右平移$\frac{π}{3}$個(gè)單位長(zhǎng)度
C.向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度D.向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.函數(shù)f(x)=-(x-5)|x|的單調(diào)遞增區(qū)間是(0,$\frac{5}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)$f(x)={log_4}({{4^x}+1})+kx$是偶函數(shù).
(1)求k的值;
(2)若函數(shù)$h(x)={4^{f(x)+\frac{1}{2}x}}+m×{2^x}-1,x∈[{0,{{log}_2}3}]$,是否存在實(shí)數(shù)m使得h(x)最小值為0,若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知定義在R上的奇函數(shù)f(x)滿(mǎn)足當(dāng)x≥0時(shí),f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}(x+1),x∈[0,1)}\\{1-|x-3|,x∈[1,+∞)}\end{array}\right.$,則關(guān)于x的函數(shù)y=f(x)-a,(-1<a<0)的所有零點(diǎn)之和為( 。
A.2a-1B.2-a-1C.1-2-aD.1-2a

查看答案和解析>>

同步練習(xí)冊(cè)答案