設(shè)橢圓 的離心率為,點,0),(0,)原點到直線的距離為。

(1) 求橢圓的方程;
(2) 設(shè)點為(,0),點在橢圓上(與、均不重合),點在直線上,若直線的方程為,且,試求直線的方程.
(1)橢圓方程為: ,(2)直線方程為

試題分析:(1)由離心率為可得出的關(guān)系,再由點,知直線的方程,利用點到直線的距離公式可得的值求出橢圓的標(biāo)準(zhǔn)方程。
(2)由(1)知,又因為直線經(jīng)過點,所以可表示出直線方程,進而求出,得出的方程又聯(lián)立求解得直線方程。
試題解析:(1)由

由點,知直線的方程為
所以
所以             4分
所以橢圓方程為:               5分
(2) 由(1)知,因為直線經(jīng)過點,所以
得, ,即直線的方程為.        7分
,即               9分
 得              12分
所以,因此直線方程為          14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:的離心率與等軸雙曲線的離心率互為倒數(shù),直線與以原點為圓心,以橢圓C的短半軸長為半徑的圓相切。
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)M是橢圓的上頂點,過點M分別作直線MA,MB交橢圓于A,B兩點,設(shè)兩直線的斜率分別為k1,k2,且k1+k2=2,證明:直線AB過定點(―1,―1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知中心在原點的橢圓的離心率,一條準(zhǔn)線方程為
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若以>0)為斜率的直線與橢圓相交于兩個不同的點,且線段的垂直平分線與兩坐標(biāo)軸圍成的三角形的面積為,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的左、右頂點分別為、,離心率.過該橢圓上任一點P作PQ⊥x軸,垂足為Q,點C在QP的延長線上,且.
(1)求橢圓的方程;
(2)求動點C的軌跡E的方程;
(3)設(shè)直線MN過橢圓的右焦點與橢圓相交于M、N兩點,且,求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)直線與雙曲線交于A、B,且以AB為直徑的圓過原點,求點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知中,點A、B的坐標(biāo)分別為,點C在x軸上方。
(1)若點C坐標(biāo)為,求以A、B為焦點且經(jīng)過點C的橢圓的方程;
(2)過點P(m,0)作傾角為的直線交(1)中曲線于M、N兩點,若點Q(1,0)恰在以線段MN為直徑的圓上,求實數(shù)m的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

)如圖,橢圓,、、為橢圓的頂點

(Ⅰ)若橢圓上的點到焦點距離的最大值為,最小值為,求橢圓方程;
(Ⅱ)已知:直線相交于,兩點(不是橢圓的左右頂點),并滿足 試研究:直線是否過定點? 若過定點,請求出定點坐標(biāo),若不過定點,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過橢圓的左頂點的斜率為的直線交橢圓于另一個點,且點軸上的射影恰好為右焦點,若,則橢圓離心率的取值范圍是_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)為雙曲線的左焦點,在軸上點的右側(cè)有一點,以為直徑的圓與雙曲線左、右兩支在軸上方的交點分別為,則的值為(     )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案