(本小題滿分15分)定義在上的奇函數(shù),滿足 ,又當(dāng)時(shí),是減函數(shù),求的取值范圍。
-2<a<-

試題分析:(1)∵函數(shù)f(x)為奇函數(shù),且當(dāng)x≥0時(shí),f(x)是減函數(shù)
∴f(x)在R上是減函數(shù)-------------5分
∴f(1+ a) + f(a) > 0,得f(1+ a) > -f(a)= f(-a)
即-a>1+a,
∴a<-------------------10分
又-2<1+a<2,-2<a<2-------------14分
得出:-2<a<-------------------15分
點(diǎn)評(píng):本題考查抽象函數(shù)的單調(diào)性的判定、及單調(diào)性的應(yīng)用,要解決抽象函數(shù)的有關(guān)問(wèn)題需要牢牢把握所給已知條件及關(guān)系式,對(duì)式子中的字母準(zhǔn)確靈活的賦值,變形構(gòu)造。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知是由滿足下述條件的函數(shù)構(gòu)成的集合:對(duì)任意
① 方程有實(shí)數(shù)根;② 函數(shù)的導(dǎo)數(shù)滿足
(Ⅰ)判斷函數(shù)是否是集合中的元素,并說(shuō)明理由;
(Ⅱ)集合中的元素具有下面的性質(zhì):若的定義域?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824003322633315.png" style="vertical-align:middle;" />,則對(duì)于任意,都存在,使得等式成立.試用這一性質(zhì)證明:方程有且只有一個(gè)實(shí)數(shù)根;
(Ⅲ)對(duì)任意,且,求證:對(duì)于定義域中任意的,,當(dāng),且時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)的定義域?yàn)?u>         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分13分)已知函數(shù)
(1) 求函數(shù)的極值;
(2)求證:當(dāng)時(shí),
(3)如果,且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù),上的最大值是最小值的2倍,
則m=       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)函數(shù)定義在實(shí)數(shù)集R上,,且當(dāng)時(shí)=,則有 (   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)已知).
⑴求的單調(diào)區(qū)間;
⑵若內(nèi)有且只有一個(gè)極值點(diǎn), 求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù),(),對(duì)任意都有,若,則的值( )
A.恒大于0B.恒小于0C.可能為0D.可正可負(fù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(10分)已知是定義在R上的減函數(shù),且,
求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案