12.設數(shù)列{an},a1=7,a2=3,an+1=3an-2,n≥2.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列bn=$\frac{{a}_{n}-1}{2}$數(shù)列{cn}滿足cn=log3bn,求數(shù)列{cnbn}的前n項和Tn

分析 (1)由an+1=3an-2,n≥2.可得an+1-1=3(an-1),利用等比數(shù)列的通項公式即可得出.
(2)由bn=$\frac{{a}_{n}-1}{2}$,可得b1=3,bn=3n-2.數(shù)列{cn}滿足cn=log3bn,c1=1,n≥2時,cn=n-2.cnbn=$\left\{\begin{array}{l}{3,n=1}\\{(n-2)•{3}^{n-2},n≥2}\end{array}\right.$.再利用“錯位相減法”與等比數(shù)列的求和公式即可得出.

解答 解:(1)由an+1=3an-2,n≥2.可得an+1-1=3(an-1),
∴數(shù)列{an-1}是首項為2,3為公比的等比數(shù)列,
∴an-1=2×3n-2+1,
則an=$\left\{\begin{array}{l}{7,n=1}\\{2×{3}^{n-2}+1,n≥2}\end{array}\right.$.
(2)由bn=$\frac{{a}_{n}-1}{2}$,可得b1=3,bn=3n-2
數(shù)列{cn}滿足cn=log3bn,
∴c1=1,n≥2時,cn=n-2.
∴cnbn=$\left\{\begin{array}{l}{3,n=1}\\{(n-2)•{3}^{n-2},n≥2}\end{array}\right.$.
∴數(shù)列{cnbn}的前n項和Tn=3+0+1×31+2×32+…+(n-3)•3n-3+(n-2)•3n-2.①
3Tn=32+0+1×32+2×33+…+(n-3)•3n-2+(n-2)•3n-1.②
①-②:-2Tn=-6+0+3+32+33+…+3n-2-(n-2)•3n-1=-6+$\frac{3({3}^{n-2}-1)}{3-1}$-(n-2)•3n-1
∴Tn=$\frac{2n-5}{4}×{3}^{n-1}$+$\frac{15}{4}$.

點評 本題考查了數(shù)列遞推關系、對數(shù)運算性質、等比數(shù)列的通項公式與求和公式、“錯位相減法”,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.已知$f(x)={3^x}-{log_{\frac{1}{3}}}$x,實數(shù)a、b、c滿足f(a)•f(b)•f(c)<0,且0<a<b<c,若實數(shù)x0是函數(shù)f(x)的一個零點,那么下列不等式中,不可能成立的是( 。
A.x0<aB.x0>bC.x0<cD.x0>c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知函數(shù)$f(x)=\left\{\begin{array}{l}{x^4}+1,x<0\\{4^x}-1,x>0\end{array}\right.$,則方程f(x)=5的解集是( 。
A.{$-\sqrt{2}$,$\sqrt{2}$,log4 6}B.{$-\sqrt{2}$,log4 6}C.{$\sqrt{2}$,log4 6}D.{$-\sqrt{2}$,$\sqrt{6}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.設命題p:關于x的一元二次不等式 ax2-x+$\frac{1}{16}$a>0的解集為R,命題q:方程$\frac{{x}^{2}}{15-a}-\frac{{y}^{2}}{a}$=1表示焦點在x軸上的雙曲線.
(1)如果p是真命題,求實數(shù)a的取值范圍;
(2)如果命題“p或q”為真命題,且“p且q”為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.如圖所示的算法流程圖中,若f(x)=sinx,g(x)=tanx,$h(-\frac{π}{6})$的值等( 。
A.-$\frac{{\sqrt{3}}}{3}$B.-$\frac{1}{2}$C.-$\sqrt{3}$D.-$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.命題“?x0∈(0,+∞),lnx0>3-x0”的否定是(  )
A.“?x0∈(0,+∞),lnx0≤3-x0B.?x∈(0,+∞),lnx>3-x
C.?x∈(0,+∞),lnx<3-xD.?x∈(0,+∞),lnx≤3-x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知二次函數(shù)f(x)=ax2+x+1,a∈R,a≠0).
(1)若不等式f(x)>0的解集為$(-\frac{1}{3},\frac{1}{2})$,求實數(shù)a的值;
(2)當a∈[-2,0]時,不等式f(x)>0恒成立,求實數(shù)x的取值范圍;
(3)對x∈[0,2]時,不等式f(x)>0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{2^x}{{{4^x}+1}}$.
(1)求$f({log_{\sqrt{2}}}3)$;
(2)證明函數(shù)f(x)在(0,+∞)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.數(shù)列{an}中,${a_1}+{a_2}+{a_3}+…+{a_n}={3^n}-1$,則${a_1}^2+{a_2}^2+{a_3}^2+…+{a_n}^2$等于( 。
A.9n-1B.(3n-1)2C.$\frac{1}{2}({{9^n}-1})$D.$\frac{3}{4}({{3^n}-1})$

查看答案和解析>>

同步練習冊答案