F1、F2是雙曲線=1的左、右焦點(diǎn),P為該雙曲線漸近線上一點(diǎn),當(dāng)PF1⊥PF2時(shí),△PF1F2的面積為______________.

答案:15  【解析】本題考查雙曲線的漸近線和求三角形面積的方法.雙曲線的漸近線方程為y=x,設(shè)P(±,y),在直角三角形中,O為斜邊F1F2的中點(diǎn),∴|OP|=|OF2|=c=5,

∴(±)2+y2=52,∴y=±3,

·|F1F2|·|y|=×2c×3=15.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的兩個(gè)焦點(diǎn),以線段F1F2為直徑的圓與雙曲線的一個(gè)交點(diǎn)為P,若PF1=2PF2,則雙曲線的兩條漸近線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2是雙曲線x2-y2=4的兩焦點(diǎn),Q是雙曲線上任意一點(diǎn),從F1 引∠F1QF2平分線的垂線,垂足為P,則點(diǎn)P的軌跡方程是
x2+y2=4
x2+y2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2是雙曲線x2-
y2
4
=1
的左、右焦點(diǎn),若雙曲線右支上存在一點(diǎn)P,使(
OP
+
OF2
)•
F2P
=0
,且|
PF2
|=λ|
PF1
|
,則λ的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•江蘇一模)已知F1,F(xiàn)2是雙曲線的兩個(gè)焦點(diǎn),以線段F1F2為邊作正△MF1F2,若邊MF1的中點(diǎn)在此雙曲線上,則此雙曲線的離心率為
3
+1
3
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•許昌三模)設(shè)F1,F(xiàn)2是雙曲線
x2
3
-y2=1
的兩個(gè)焦點(diǎn),P在雙曲線上,當(dāng)△F1PF2的面積為2時(shí),
PF1
PF2
的值為(  )

查看答案和解析>>

同步練習(xí)冊答案