已知sinα=-
3
5
,α∈(π,
3
2
π)
,則cosα的值是(  )
分析:根據(jù)sin2α+cos2α=1以及角的范圍即可求出結(jié)果.
解答:解:解:sin2α+cos2α=1,即cos2α+(-
3
5
2=1
∴cos2α=
16
25
,
∴cosα=
4
5
或-
4
5

∵a∈(π,
3
2
π)
∴cosα=-
4
5

故選:C.
點(diǎn)評(píng):此題考查了同角三角函數(shù)的基本關(guān)系,要注意角的范圍,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知sinθ=
3
5
,θ∈(
π
2
,π)
,求tanθ,cos(θ+
π
4
)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα=
3
5
,則cos2α的值為( 。
A、-
24
25
B、-
7
25
C、
7
25
D、
24
25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα=
3
5
,且α∈(
π
2
,π)
,那么sin2α等于( 。
A、
12
25
B、-
12
25
C、
24
25
D、-
24
25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα=
3
5
,α∈(0,
π
2
)

(1)求cosα的值;
(2)求sin2α+cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•廣州一模)已知sinθ=
3
5
,θ∈(0,
π
2
)
,求tanθ和cos2θ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案