A. | 2 | B. | 3 | C. | 4 | D. | 5 |
分析 畫出滿足約束條件的可行域,求出目標(biāo)函數(shù)的最大值,從而建立關(guān)于m的等式,即可得出答案.
解答 解:由z=x+my得y=-$\frac{1}{m}$x+$\frac{z}{m}$,
∵m>1,∴目標(biāo)函數(shù)的斜率k=-$\frac{1}{m}$∈(-1,0),
作出不等式組對應(yīng)的平面區(qū)域如圖:
由平移可知當(dāng)直線y=-$\frac{1}{m}$x+$\frac{z}{m}$,
經(jīng)過點A時,目標(biāo)函數(shù)取得最大值,此時z=x+my=3,
由$\left\{\begin{array}{l}{y=2x}\\{x+y=1}\end{array}\right.$,解得A($\frac{1}{3}$,$\frac{2}{3}$),
同時,A也在直線x+my=3上,
代入得$\frac{1}{3}$+$\frac{2}{3}$m=3,解得m=4,
故選:C.
點評 本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)目標(biāo)函數(shù)的幾何意義確定取得最大值的最優(yōu)解是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f′(x0)=0 | B. | f″(x0)>0 | ||
C. | f′(x0)=0且f″(x0)>0 | D. | f′(x0)=0或f′(x0)不存在 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 一個命題的逆命題為真,則它的逆否命題一定為真 | |
B. | 若“ac2>bc2”,則a>b | |
C. | ?x0∈R,$sin{x_0}+cos{x_0}=\frac{3}{2}$ | |
D. | “a2+b2=0,則a,b全為0”的逆否命題是“若a,b全不為0,則a2+b2≠0” |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com