若k1,k2,…,k8的方差為3,則2(k1-3),2(k2-3),…,2(k8-3)的方差為_______.

   

思路解析:設k1,k2,…,k8的平均數(shù)為k,

    則(k1-)2+(k2-)2+…+?(k8-)2]?=3.

    而2(k1-3),2(k2-3),…,2(k8-3)的平均數(shù)為2(-3),

    則s=[4(k1-)2+4(k2-)2+…+?4(k8-)2]=4×3=12.

    答案:12


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)橢圓x2+
y2
4
=1短軸的左右兩個端點分別為A,B,直線l:y=kx+1與x軸、y軸分別交于兩點E,F(xiàn),交橢圓于兩點C,D.
(Ⅰ)若
CE
=
FD
,求直線l的方程;
(Ⅱ)設直線AD,CB的斜率分別為k1,k2,若k1:k2=2:1,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列五個命題:
①已知直線a,b和平面α,若a∥b,b∥α,則a∥α;
②平面上到一個定點和一條定直線的距離相等的點的軌跡是一條拋物線;
③雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0),則直線y=
b
a
x+m(m∈R)與雙曲線有且只有一個公共點;
④若兩個平面垂直,那么一個平面內(nèi)與它們的交線不垂直的直線與另一個平面也不垂直;
⑤過M(2,0)的直線l與橢圓
x2
2
+y2=1交于P1P2兩點,線段P1P2中點為P,設直線l斜率為k1(k≠0),直線OP的斜率為k2,則k1k2等于-
1
2

其中,正確命題的序號為
④⑤
④⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•黃州區(qū)模擬)如圖,已知點D(0,-2),過點D作拋物線C1:x2=2py(p∈[1,4]的切線l,切點A在第二象限.
(1)求切點A的縱坐標;
(2)若離心率為
3
2
的橢圓
x2
a2
+
y2
b2
=1(a>b>c)恰好經(jīng)過A點,設切線l交橢圓的另一點為B,若設切線l,直線OA,OB的斜率為k,k1,k2,①試用斜率k表示k1+k2②當k1+k2取得最大值時求此時橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
4
+
y2
3
=1
,過橢圓的右焦點F的直線l與橢圓交于點A、B,定直線x=4交x軸于點K,直線KA和直線KB的斜率分別是k1、k2
(1)若直線l的傾斜角是45°,求線段AB的長;
(2)求證:k1+k2=0.

查看答案和解析>>

科目:高中數(shù)學 來源:福建省泉州一中2012屆高三5月模擬考試數(shù)學理科試題 題型:044

設橢圓C:=1(a>b>0),其長軸是短軸的兩倍,以某短軸頂點和長軸頂點為端點

的線段作為直徑的圓的周長為π.

(Ⅰ)求橢圓C的方程;

(Ⅱ)若直線l與橢圓相交于A,B兩點,設直線OA,l,OB的斜率分別為k1,k,k2,(其中k>0).△OAB的面積為S,以OA,OB為直徑的圓的面積分別為S1,S2.若k1,k,k2恰好構(gòu)成等比數(shù)列,求的取值范圍.

查看答案和解析>>

同步練習冊答案