(1)設不等式x2-2ax+a+2≤0的解集為M,如果M[1,4],求實數a的取值范圍?
(2)解關于x的不等式>1(a≠1)。
(1)a的取值范圍是(-1,)(2)當a>1時解集為(-∞,)∪(2,+∞);當0<a<1時,解集為(2,);當a=0時,解集為;當a<0時,解集為(,2)。
(1)M[1,4]有兩種情況:其一是M=,此時Δ<0;其二是M≠,此時Δ=0或Δ>0,分三種情況計算a的取值范圍
設f(x)=x2 -2ax+a+2,有Δ=(-2a)2-(4a+2)=4(a2-a-2)
當Δ<0時,-1<a<2,M=[1,4];
當Δ=0時,a=-1或2;
當a=-1時M={-1}[1,4];當a=2時,m={2}[1,4]。
當Δ>0時,a<-1或a>2。
設方程f(x)=0的兩根x1,x2,且x1<x2,
那么M=[x1,x2],M[1,4]1≤x1<x2≤4,
即,解得2<a<,
∴M[1,4]時,a的取值范圍是(-1,)。
(2)原不等式可化為:>0,
①當a>1時,原不等式與(x-)(x-2)>0同解。
由于,
∴原不等式的解為(-∞,)∪(2,+∞)。
②當a<1時,原不等式與(x-)(x-2) <0同解。
由于,
若a<0,,解集為(,2);
若a=0時,,解集為;
若0<a<1,,解集為(2,)。
綜上所述:當a>1時解集為(-∞,)∪(2,+∞);當0<a<1時,解集為(2,);當a=0時,解集為;當a<0時,解集為(,2)。
科目:高中數學 來源: 題型:
1 |
2 |
1 |
2 |
x |
2 |
x |
8 |
a+b |
2 |
查看答案和解析>>
科目:高中數學 來源:2011年高三數學一輪精品復習學案:6.3 單元總結與測試(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com