函數(shù)y=sin(2x+
π
3
)圖象的對(duì)稱(chēng)軸方程可能是( 。
A、x=-
π
6
B、x=-
π
12
C、x=
π
6
D、x=
π
12
分析:令2x+
π
3
=
π
2
+kπ
求出x的值,然后根據(jù)k的不同取值對(duì)選項(xiàng)進(jìn)行驗(yàn)證即可.
解答:解:令2x+
π
3
=
π
2
+kπ
,∴x=
π
12
+
2
(k∈Z)
當(dāng)k=0時(shí)為D選項(xiàng),
故選D.
點(diǎn)評(píng):本題主要考查正弦函數(shù)對(duì)稱(chēng)軸的求法.屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sin(-2x+
π4
),x∈[0,π]的單調(diào)減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•門(mén)頭溝區(qū)一模)為得到函數(shù)y=sin(π-2x)的圖象,可以將函數(shù)y=sin(2x-
π
3
)的圖象( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sin(2x+φ)(0≤φ≤π)是R上的偶函數(shù),則φ的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線(xiàn)x=t與函數(shù)y=sin(2x+
π
4
)和y=cos(2x+
π
4
)的圖象分別交于P,Q兩點(diǎn),則|PQ|的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)結(jié)論:
①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;
②函數(shù)y=
1
2
+
1
2x-1
(x≠0)
是奇函數(shù);
③函數(shù)y=sin(-2x)在區(qū)間[
π
4
,
4
]
上是減函數(shù);
④函數(shù)y=cos|x|是周期函數(shù);
⑤對(duì)于命題p:?x∈R,使得x2+x+1<0,則?p:?x∈R,均有x2+x+1≥0.(其中“?”表示“存在”,“?”表示“任意”).
其中錯(cuò)誤結(jié)論的序號(hào)是
.(填寫(xiě)你認(rèn)為錯(cuò)誤的所有結(jié)論序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案