形狀如圖所示的三個(gè)游戲盤中(圖(1)是正方形,M、N分別是所在邊中點(diǎn),圖(2)是半徑分別為2和4的兩個(gè)同心圓,O為圓心,圖(3)是正六邊形,點(diǎn)P為其中心)各有一個(gè)玻璃小球,依次搖動三個(gè)游戲盤后,將它們水平放置,就完成了一局游戲.

(I)一局游戲后,這三個(gè)盤中的小球都停在陰影部分的概率是多少?

(II)用隨機(jī)變量表示一局游戲后,小球停在陰影部分的事件數(shù)與小球沒有停在陰影部分的事件數(shù)之差的絕對值,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

 

 

 

 

 
 

 

 

【答案】

 (I)“一局游戲后,這三個(gè)盤中的小球都停在陰影部分”分別記為事件A1、A2A3,由題意知,A1、A2A3互相獨(dú)立,且P(A1)P(A2),P(A3), …3分

        P(A1 A2 A3)= P(A1) P(A2) P(A3)××………………………………6分

    (II)一局游戲后,這三個(gè)盤中的小球都停在陰影部分的事件數(shù)可能是0,1,2,3,相應(yīng)的小球沒有停在陰影部分的事件數(shù)可能取值為3,2,1,0,所以ξ可能的取值為1,3,則

         P(ξ=3)= P(A1 A2 A3)+ P()=P(A1) P(A2) P(A3)+ P()P()P()

                ××+ ××

         P(ξ=1)=1-=. …………………………………………………………8分

         所以分布列為

ξ

1

…………10分

 
3

P

          數(shù)學(xué)期望Eξ=1×+3×=. ………………………………………12分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

形狀如圖所示的三個(gè)游戲盤中(圖(1)是正方形,M、N分別是所在邊中點(diǎn),圖(2)是半徑分別為2和4的兩個(gè)同心圓,O為圓心,圖(3)是正六邊形,點(diǎn)P為其中心)各有一個(gè)玻璃小球,依次搖動三個(gè)游戲盤后,將它們水平放置,就完成了一局游戲.
(I)一局游戲后,這三個(gè)盤中的小球都停在陰影部分的概率是多少?
(Ⅱ)用隨機(jī)變量ζ表示一局游戲后,小球停在陰影部分的事件數(shù)與小球沒有停在陰影部分的事件數(shù)之差的絕對值,求隨機(jī)變量ζ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

形狀如圖所示的三個(gè)游戲盤中(圖1是正方形,M、N分別是所在邊中點(diǎn),圖2是半徑分別為2和4的兩個(gè)同心圓,O為圓心,圖3是正六邊形,點(diǎn)P為其中心)各有一個(gè)玻璃小球,依次搖動三個(gè)游戲盤后,將它們水平放置,就完成了一局游戲.
(I)一局游戲后,這三個(gè)盤中的小球都停在陰影部分的概率是多少?
(II)用隨機(jī)變量ξ表示一局游戲后,小球停在陰影部分的事件數(shù)與小球沒有停在陰影部分的事件數(shù)之差的絕對值,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泰安二模)形狀如圖所示的三個(gè)游戲盤中(圖(1)是正方形,M、N分別是所在邊中點(diǎn),圖(2)是半徑分別為2和4的兩個(gè)同心圓,O為圓心,圖(3)是正六邊形,點(diǎn)P為其中心)各有一個(gè)玻璃小球,依次水平搖動三個(gè)游戲盤,當(dāng)小球靜止后,就完成了一局游戲.

(1)一局游戲后,這三個(gè)盤中的小球都停在陰影部分的概率是多少?
(II)用隨機(jī)變量ξ表示一局游戲后,小球停在陰影部分的事件個(gè)數(shù)與小球沒有停在陰影部分的事件個(gè)數(shù)之差的絕對值,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省八市高三三月聯(lián)考理科數(shù)學(xué) 題型:解答題

(本題滿分12分)

形狀如圖所示的三個(gè)游戲盤中(圖(1)是正方形,M、N分別是所在邊中點(diǎn),圖(2)是半徑分別為2和4的兩個(gè)同心圓,O為圓心,圖(3)是正六邊形,點(diǎn)P為其中心)各有一個(gè)玻璃小球,依次搖動三個(gè)游戲盤后,將它們水平放置,就完成了一局游戲.

(I)一局游戲后,這三個(gè)盤中的小球都停在陰影部分的概率是多少?

(II)用隨機(jī)變量表示一局游戲后,小球停在陰影部分的事件數(shù)與小球沒有停在陰影部分的事件數(shù)之差的絕對值,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年遼寧省大連市高考數(shù)學(xué)壓軸卷 (理科)(解析版) 題型:解答題

形狀如圖所示的三個(gè)游戲盤中(圖1是正方形,M、N分別是所在邊中點(diǎn),圖2是半徑分別為2和4的兩個(gè)同心圓,O為圓心,圖3是正六邊形,點(diǎn)P為其中心)各有一個(gè)玻璃小球,依次搖動三個(gè)游戲盤后,將它們水平放置,就完成了一局游戲.
(I)一局游戲后,這三個(gè)盤中的小球都停在陰影部分的概率是多少?
(II)用隨機(jī)變量ξ表示一局游戲后,小球停在陰影部分的事件數(shù)與小球沒有停在陰影部分的事件數(shù)之差的絕對值,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案