【題目】經(jīng)過長(zhǎng)期觀測(cè)得到:在交通繁忙的時(shí)段內(nèi),某公路汽車的車流量(千輛/h)與汽車的平均速度之間的函數(shù)關(guān)系式為:.
(1)若要求在該段時(shí)間內(nèi)車流量超過2千輛,則汽車在平均速度應(yīng)在什么范圍內(nèi)?
(2)在該時(shí)段內(nèi),若規(guī)定汽車平均速度不得超過,當(dāng)汽車的平均速度為多少時(shí),車流量最大?最大車流量為多少?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有如下四個(gè)命題:
①甲乙兩組數(shù)據(jù)分別為甲:28,31,39,42,45,55,57,58,66;乙:29,34,35,48,42,46,55,53,55,67.則甲乙的中位數(shù)分別為45和44.
②相關(guān)系數(shù),表明兩個(gè)變量的相關(guān)性較弱.
③若由一個(gè)22列聯(lián)表中的數(shù)據(jù)計(jì)算得的觀測(cè)值,那么有95%的把握認(rèn)為兩個(gè)變量有關(guān).
④用最小二乘法求出一組數(shù)據(jù)的回歸直線方程后要進(jìn)行殘差分析,相應(yīng)于數(shù)據(jù)的殘差是指.
以上命題“錯(cuò)誤”的序號(hào)是_________________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx,其中a>0.曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線y=x+1垂直.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[1,e]上的極值和最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了積極支持雄安新區(qū)建設(shè),鼓勵(lì)更多優(yōu)秀大學(xué)生畢業(yè)后能到新區(qū)去,某985高校組織了一次模擬招聘活動(dòng),現(xiàn)從考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),并按成績(jī)分成五組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示,(由于某種原因,部分直方圖不夠清晰),同時(shí)規(guī)定成績(jī)不低于90分為“優(yōu)秀”,成績(jī)低于90分為“良好”,且只有成績(jī)“優(yōu)秀”的學(xué)生才能獲得專題測(cè)試資格.
(1)若已知分?jǐn)?shù)段與的人數(shù)比為2:1,請(qǐng)補(bǔ)全損壞的直方圖;
(2)如果用分層抽樣的方法從成績(jī)?yōu)椤皟?yōu)秀”和“良好”中選出10人,設(shè)甲是選出的成績(jī)“優(yōu)秀”中的一個(gè),若從選出的成績(jī)“優(yōu)秀”的學(xué)生中再任選2人參加兩項(xiàng)不同的專題測(cè)試(每人參加一種,二者互不相同),求甲被選中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三棱柱中,(底面為正三角形,側(cè)棱垂直于底面),側(cè)棱長(zhǎng),底面邊長(zhǎng),是的中點(diǎn).
(1)求證:平面平面;
(2)求三棱錐的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),,,數(shù)列的前項(xiàng)和,點(diǎn)()均在函數(shù)的圖像上.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),是數(shù)列的前項(xiàng)和,求滿足()的最大正整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】,,,,,六名同學(xué)參加一項(xiàng)比賽,決出第一到第六的名次.,,三人去詢問比賽結(jié)果,裁判對(duì)說:“你和都不是第一名”;對(duì)說:“你不是最差的”;對(duì)說:“你比,的成績(jī)都好”,據(jù)此回答六人的名次有_____________種不同情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
Ⅰ若函數(shù)在區(qū)間上為增函數(shù),求a的取值范圍;
Ⅱ若對(duì)任意恒成立,求實(shí)數(shù)m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)),設(shè)直線的極坐標(biāo)方程為.
(1)將曲線的參數(shù)方程化為普通方程,并指出其曲線是什么曲線;
(2)設(shè)直線與軸的交點(diǎn)為為曲線上一動(dòng)點(diǎn),求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com