在上題中求點(diǎn)關(guān)于平面xOy對(duì)稱的點(diǎn)的坐標(biāo).

答案:略
解析:

解:設(shè)所求點(diǎn)為可知B的中點(diǎn),

解得


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在A,B,C,D四小題中只能選做2題,每題10分,共計(jì)20分.
A、如圖,AB為⊙O的直徑,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上.求證:PE是⊙O的切線.
B、設(shè)M是把坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長到2倍,縱坐標(biāo)伸長到3倍的伸壓變換.
(1)求矩陣M的特征值及相應(yīng)的特征向量;
(2)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1
在M-1的作用下的新曲線的方程.
C、已知某圓的極坐標(biāo)方程為:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(Ⅰ)將極坐標(biāo)方程化為普通方程;并選擇恰當(dāng)?shù)膮?shù)寫出它的參數(shù)方程;
(Ⅱ)若點(diǎn)P(x,y)在該圓上,求x+y的最大值和最小值.
D、若關(guān)于x的不等式|x+2|+|x-1|≥a的解集為R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【選做題】在A,B,C,D四小題中只能選做2題,每題10分,共計(jì)20分.請?jiān)诖痤}卡指定區(qū)域內(nèi)作答,解答時(shí)寫出文字說明、證明過程或演算步驟.
21-1.(選修4-2:矩陣與變換)
設(shè)M是把坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長到2倍,縱坐標(biāo)伸長到3倍的伸壓變換.
(1)求矩陣M的特征值及相應(yīng)的特征向量;
(2)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1在M-1的作用下的新曲線的方程.
21-2.(選修4-4:參數(shù)方程)
以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸.已知點(diǎn)P的直角坐標(biāo)為(1,-5),點(diǎn)M的極坐標(biāo)為(4,
π
2
),若直線l過點(diǎn)P,且傾斜角為 
π
3
,圓C以M為圓心、4為半徑.
(1)求直線l關(guān)于t的參數(shù)方程和圓C的極坐標(biāo)方程;
(2)試判定直線l和圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在上題中求B1(1,1,1)點(diǎn)關(guān)于平面xOy對(duì)稱的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:湖南省高考適應(yīng)性測試數(shù)學(xué)(文) 題型:解答題

(本小題滿分13分)
如圖6所示,在直角坐標(biāo)平面上的矩形中,,,點(diǎn),滿足,點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn),直線相交于點(diǎn)
(Ⅰ)求點(diǎn)的軌跡方程;
(Ⅱ)若過點(diǎn)的直線與點(diǎn)的軌跡相交于,兩點(diǎn),求的面積的最大值.
圖6

查看答案和解析>>

同步練習(xí)冊答案