已知函數(shù)f(x)=tan(3x+
π
4
)

(Ⅰ)求f(
π
9
)
的值;
(Ⅱ)若α∈(π,2π),且f(
α
3
)=2
,求cos(α-
π
4
)
的值.
分析:(Ⅰ)直接把x=
π
9
代入函數(shù)的表達(dá)式,即可求解f(
π
9
)
的值;
(Ⅱ)通過α∈(π,2π),且f(
α
3
)=2
,求出tanα的值,利用同角三角函數(shù)的基本關(guān)系式求出sinα,cosα的值,然后求cos(α-
π
4
)
的值
解答:解:(Ⅰ)f(
π
9
)=tan(
π
3
+
π
4
)=
tan
π
3
+tan
π
4
1-tan
π
3
tan
π
4
=
3
+1
1-
3
=-2-
3
(6分)
(Ⅱ)由f(
α
3
)=2
tanα=
1
3
,(8分)
由題可知α是第三象限角.sinα=-
1
10
,cosα=-
3
10
(10分)
cos(α-
π
4
)=-
2
5
5
(12分).
點(diǎn)評(píng):本題考查兩角和與差的三角函數(shù),同角三角函數(shù)的基本關(guān)系式的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1-2x1+2x

(1)試確定f(x)的奇偶性;
(2)求證:函數(shù)f(x)在R上是減函數(shù);
(3)若對(duì)任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x3+2x2+5x+tex

(1)當(dāng)t=5時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若存在t∈[0,1],使得對(duì)任意x∈[-4,m],不等式f(x)≤x成立,求整數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a(x-1)2+1
bx+c-b
(a,b,c∈N),且f(2)=2,f(3)<3,
且f(x)的圖象按向量
e
=(-1,0)
平移后得到的圖象關(guān)于原點(diǎn)對(duì)稱.
(1)求a、b、c的值;
(2)設(shè)0<|x|<1,0<|t|≤1,求證不等式|t+x|-|t-x|<|f(tx+1)|;
(3)已知x>0,n∈N*,求證不等式[f(x+1)]n-f(xn+1)≥2n-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•閔行區(qū)一模)已知函數(shù)f(x)=loga
1-x1+x
(0<a<1)

(1)求函數(shù)f(x)的定義域D,并判斷f(x)的奇偶性;
(2)如果當(dāng)x∈(t,a)時(shí),f(x)的值域是(-∞,1),求a與t的值;
(3)對(duì)任意的x1,x2∈D,是否存在x3∈D,使得f(x1)+f(x2)=f(x3),若存在,求出x3;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(t∈R)在[1,2]上的最小值為,P1(x1,y1),P2(x2,y2)是函數(shù)f(x)=圖象上不同兩點(diǎn),且線段P1P2的中點(diǎn)P的橫坐標(biāo)為.

(1)求t的值;

(2)求證:點(diǎn)P的縱坐標(biāo)是定值;

(3)若數(shù)列{an}的通項(xiàng)公式為an=f()(m∈N*,n=1,2,…,m),求數(shù)列{an}的前m項(xiàng)和Sm.

查看答案和解析>>

同步練習(xí)冊(cè)答案