若雙曲線的離心率等于,直線與雙曲線的右支交于兩點(diǎn).
(1)求的取值范圍;
(2)若,點(diǎn)是雙曲線上一點(diǎn),且,求
(1)(2),
【解析】
試題分析:(1)由 得
故雙曲線的方程為 2分
設(shè),
由 得 4分
又直線與雙曲線右支交于兩點(diǎn),所以
解得-----6分
(2)
得
∴或 又 ∴ 9分
那么,
設(shè),由已知,得
∴
∴ ,得
故,.----------14分
考點(diǎn):雙曲線方程及性質(zhì),直線與雙曲線的位置關(guān)系
點(diǎn)評:直線與雙曲線相交時常聯(lián)立方程組,轉(zhuǎn)化為關(guān)于x或y的二次方程,利用韋達(dá)定理設(shè)而不求的方法
再將所求問題用根與系數(shù)的關(guān)系的表示
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
3 |
3 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若雙曲線的離心率等于,直線與雙曲線的右支交于兩點(diǎn).
(1)求的取值范圍;
(2)若,點(diǎn)是雙曲線上一點(diǎn),且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若雙曲線的離心率等于,焦點(diǎn)到漸近線的距離為1,直線與雙曲線的右支交于兩點(diǎn).
(1)求的取值范圍;
(2)若,點(diǎn)是雙曲線左支上一點(diǎn),滿足,求點(diǎn)坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com