如圖所示.△ABC中,AB>AC,作∠FBC=∠ECB=
1
2
∠A,E,F(xiàn)分別在邊AC,AB上.求證:BE=CF.
考點:相似三角形的性質
專題:立體幾何
分析:延長ME到P使MP=MF,構造△PMB≌△FMC,得到BP=CF,∠MFC=∠MPB,再根據(jù)三角形外交定理,得到∠AEC=∠MFC,繼而得到PB=EB,問題得以證明.
解答: 證明:延長ME到P使MP=MF
∵∠FBC=∠ECB=
1
2
∠A,
∴BM=CM,
又∠PMB=∠FMC,
∴△PMB≌△FMC,
∴BP=CF,∠MFC=∠MPB
∴∠FMC=∠FBC+∠ECB=∠A,
∵∠AEC=∠ABC+∠ECB=∠ABM+∠FBC+∠ECB,∠MFC=∠A+∠ABM,
∴∠AEC=∠MFC
∴∠PEB=∠MPB
∴PB=EB
∴BE=CF
點評:本題主要考查了三角形全等以及三角形的外角定理,以及等腰三角形的知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點A(3,
3
),O是坐標原點,點P(x,y)的坐標滿足
3
x-y≤0
x-
3
y+2≥0
y≥0
,設z為
OA
OP
上的投影,則z的取值范圍是( 。
A、[-3,3]
B、[-
3
3
]
C、[-
3
,3]
D、[-3,
3
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示的多面體是由底面為ABCD的長方體被截面AEFG所截而得,其中AB=4,BC=1,BE=3,CF=4,若如圖所示建立空間直角坐標系:
①求
EF
和點G的坐標;
②求異面直線EF與AD所成的角;
③求點C到截面AEFG的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在Rt△ABC中,∠CAB=90°,AB=2,AC=
2
2
,D是線段AB的垂直平分線上的一點,D到AB的距離為2,過C的曲線E上任一點P滿足|
PA
|+|
PB
|為常數(shù).
(1)建立適當?shù)淖鴺讼,并求出曲線E的方程.
(2)過點D的直線l與曲線E相交于不同的兩點M,N,且M點在D,N之間,若|
DM
|=λ|
DN
|,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某中學對高三年級進行身高統(tǒng)計,測量隨機抽取的40名學生的身高,其結果如下(單位:cm)
分組[140,145)[145,150)[150,155)[155,160)[160,165)[165,170)[170,175)[175,180)合計
人數(shù)12591363140
(1)列出頻率分布表;
(2)畫出頻率分布直方圖;
(3)估計數(shù)據(jù)落在[150,170]范圍內的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正四棱臺的體對角線是5cm,高是3cm,求它的兩條相對側棱所確定的截面的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某種產(chǎn)品按質量標準分成五個等級,等級編號x依次為1,2,3,4,5,現(xiàn)從一批產(chǎn)品中隨機抽取20件,對其等級編號進行統(tǒng)計分析,得到頻率分布表如下:
x12345
頻率a0.30.35bc
(1)若所抽取的20件產(chǎn)品中,等級編號為4的恰有2件,等級編輯為5的恰有4件,求a,b,c的值.
(2)在(1)的條件下,將等級編輯為4的2件產(chǎn)品記為x1、x2,等級編輯為5的4件產(chǎn)品記為y1,y2,y3,y4,現(xiàn)從x1、x2,y1,y2,y3,y4,這6件產(chǎn)品中任取兩件(假定每件產(chǎn)品被取出的可能性相同),寫出所有可能的結果,并求這兩件產(chǎn)品的等級編號恰好相同的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知t∈R,設函數(shù)f(x)=x3-
3(t+1)
2
x2+3tx+1.
(Ⅰ)若f(x)在(0,2)上無極值,求t的值;
(Ⅱ)若存在x0∈(0,2),使得f(x0)是f(x)在[0,2]上的最值,求t的取值范圍;
(Ⅲ)當t=1時,若f(x)≤xex-5x2+5x-m+2(e為自然對數(shù)的底數(shù))對任意x∈[0,+∞)恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a+log2x,且f(a)=1,則函數(shù)f(x)的零點為
 

查看答案和解析>>

同步練習冊答案