數(shù)學公式
(1)證明:f(n+1)>f(n),
(2)求實數(shù)m的取值范圍,使數(shù)學公式恒成立.

解:(1)∵

=,
∴f(n+1)>f(n).
(2)∵f(n+1)>f(n),∴f(x)是關于n的增函數(shù),

∴要使恒成立.
只要成立即可.
得m>1且m≠2.
設[logm(m-1)]2=t,則t>0,
,∴0<t<1.
∴0<[logm(m-1)]2<1,
解得,且m≠2.
分析:(1)由題意可知=,由此可以得到f(n+1)>f(n).
(2)由f(x)是關于n的增函數(shù),可知.要使恒成立.只要成立即可.由此入手能夠推導出實數(shù)m的取值范圍.
點評:本題考查數(shù)列的性質(zhì)和綜合運用,解題時要注意挖掘隱含條件,認真審題,細心解答.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

Sn=1+
1
2
+
1
3
+…+
1
n
(n∈N*),f(n)=S2n+1-Sn+1.

(1)證明:f(n+1)>f(n),
(2)求實數(shù)m的取值范圍,使n>1且n∈N*,f(n)>[logm(m-1)]2-
11
20
[log(m-1)m]2
恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=loga(1-x),g(x)=loga(1+x),(a>0且a≠1).
(Ⅰ)設函數(shù)F(x)=f(x)-g(x),判斷函數(shù)F(x)的奇偶性并證明;
(Ⅱ)若關于x的方程g(m+2x-x2)=f(x)有實數(shù)根,求實數(shù)m的范圍;
(Ⅲ)當a>1時,不等式f(n-x)>
12
g(x)對任意x∈[0,1]恒成立,求實數(shù)n的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是定義在R上的函數(shù),對任意m、n∈R恒有f(m+n)=f(m)+f(n),且當x>0時,f(x)<0,f(1)=-2.
(1)證明:f(x)是奇函數(shù);
(2)求證:f(x)在R是減函數(shù);
(3)解不等式f(
3x
)+f(x-1)≤-6

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高三數(shù)學復習(第5章 不等式):5.11 不等式復習課(解析版) 題型:解答題


(1)證明:f(n+1)>f(n),
(2)求實數(shù)m的取值范圍,使恒成立.

查看答案和解析>>

同步練習冊答案